
1

Programovací jazyk C++

Mgr. Rostislav Fojtík
 Ostrava, 1998

2

Obsah
1. Úvod ...3
2. Základy objektově orientovaného programování v jazyku C++..4

2.1. Třídy...4
2.2. Dědičnost - inheritance ..6

3. Nové prvky jazyka C++ ...8
3.1. Proudový vstup a výstup..9
3.2. Funkce..10

3.2.1. Nové prvky ..10
3.2.2. Odkazy...10
3.2.3. Přetížené funkce ..11
3.2.4. Funkce main ..11

3.3. Práce se soubory ..12
3.3.1. Otevření a uzavření souboru..12
3.3.2. Formátový a neformátový vstup a výstup ...14
3.3.3. Přímý přístup k souboru ..14

3.4. Dynamická alokace paměti ..15
3.4.1. Operátor new ...15
3.4.2. Operátor delete ..15

3.5 Přetížený operátor ...16
4. Objektově orientované programování v jazyku C++...17

4.1. Třídy a instance..17
4.1.1. Konstrukce třídy ..17
4.1.2. Datové prvky ...17
4.1.3. Standardní metody - konstruktor a destruktor ...17
4.1.4. Deklarace a definice metod ...18
4.1.5. Statické datové členy a funkce ..23
4.1.6. Přátelé ..24
4.1.7. Kompozice objektů..25

4.2. Dědičnost - inheritance ..26
4.3. Polymorfismus ...31

4.3.1. Virtuální metody..31
4..3.2. Abstraktní a instanční třídy ..32

4.3. Vícenásobná dědičnost..33
5. Šablony...34
6. Výjimky..36
7. Přetypování...38
Literatura ..39

3

1. Úvod
Tyto učební texty slouží pro studenty III. ročníku studijních oborů se zaměřením na

informatiku. Učivo navazuje na znalosti ze zimního semestru o programování v jazyku C.

Jazyk C++ je odvozen od jazyka C. Vnáší do jazyka nové možnosti, upravuje a rozšiřuje

některé prvky standardního jazyka C. Jazyk C++ navrhl Bjarne Stroustrup z Bellových laboratoří
AT&T. Ten pro svou práci na simulaci modelu pro distribuované systémy zjistil, že se mu velmi
dobře hodí objektový přístup. Nejprve použil jazyk Simula, který se příliš neosvědčil, proto se
zaměřil na návrh nového jazyka, který by nejen podporoval objektový přístup, ale byl i
dostatečně rychlý. Jako základ použil existující jazyk C. Nový jazyk nejprve dostal název "C
with Classes" - C s třídami. Později se prosadil název C++ ("následník C"). Standardizace jazyka
C++ není doposud uzavřena.
 K nejznámějším překladačům C/C++ patří překladače firem Borland (Borland C/C++
5.0), Microsoft (Visual C/C++ 2.0), Watcom C/C++ 11, Zortech, IBM ...

4

2. Základy objektově orientovaného programování v jazyku C++
 Programovací jazyk C vychází z koncepce, která rozděluje program na data a
algoritmické struktury (reprezentované např. funkcemi). Obě skupiny mohou být zpracovávány
teoreticky nezávisle na sobě (algoritmy musí být pouze vhodné pro vstup, zpracování a výstup
určitých dat).
 Jazyk C++ může využívat většiny postupů jazyka C, ale navíc principů objektově
orientovaného programování, které vnímají data i příslušné algoritmy jako jeden celek. Data a
algoritmy jsou sdruženy v objektech. S daty se v objektech manipuluje pomocí metod (v jazyku
C++ se metody často označují členskými funkcemi), které jsou součásti daného objektu. Často se
hovoří o tom, že “objekty si posílají zprávy”. Toto posílání zpráv objektu je realizováno jako
vyvolání některé z jeho metod.

 Obecné vlastnosti charakterizující OOP:
1. Zapouzdření (Encapsulation)
 Spojení prvků dat s metodami, které mají pracovat s daty.
2. Dědičnost (Inheritance)
 Možnost odvozovat nové třídy, které dědí data a metody z jedné nebo více tříd. V
odvozených třídách je možno přidávat nebo předefinovávat nová data a metody.
3. Polymorfismus
 Česky možno vyjádřit přibližně pojmem "vícetvarost". Umožňuje jediným příkazem
zpracovávat "podobné" objekty.

 Tyto vlastnosti umožňují vytvářet lépe strukturovaný a udržovatelný program.

 2.1. Třídy
Srovnání klíčových pojmů rozdílných jazyce C a C++:
 uživatelem definovaný datový typ třída
 proměnná objekt (instance třídy)
 funkce metoda (členská funkce)
 volání funkce zpráva, událost

 Základem OOP je třída (class). Typ třída se podobá struktuře v jazyce C. Může však
navíc obsahovat i funkce nazývané metodami - princip zapouzdření. Zapouzdření kromě spojení
členských dat a členských funkcí umožňuje jasně odlišit vlastnosti dané třídy, které mohou být
používány i mimo definici třídy od rysů, které lze využívat jen uvnitř třídy - rozlišení
přístupových práv.
Příklad deklarace:
class rozpocet{// deklarace třídy, není nutné používat typedef
 private: // seznam soukromých členů
 int hotovost; // soukromý člen třídy - data
 public: // seznam veřejných členů třídy
 int plat(int velikost);// metoda, neboli členská funkce
 int najemne(int n); // deklarace metody
 int pujcky(int p); // deklarace metody
 };

5

Pojem objekt budeme chápat jako konkrétní výskyt, instanci dané třídy.Viz následující
deklarace:

rozpocet me_penize; // rozpocet je třída, me_penize
// představuje objekt

Srovnání struktur v C, struktur a tříd v C++ :
 struktura v C struktura v C++ třída v C++
typedef struct{ struct hodnota{ class hodnota{
 int a; int a; public:
 float b; float b; int a;
 }hodnota; }; float b; };
Rozdíl mezi strukturami v C a třídami v C++ je v úrovni přístupu ke členům. Ten se určuje
pomocí public:, privat: a protected: (veřejné, soukromé a chráněné členy).
 Veřejné členy - na ně se můžeme obracet všude, kde je objekt znám prostřednictvím
libovolného jiného člena třídy, ale i prostřednictvím libovolné jiné funkce nebo výrazu.
 Soukromé členy - obracet se na ně můžeme pouze prostřednictvím členů téže třídy nebo
pomocí zvláštních funkcí, kterým se říká spřátelené metody.
 Chráněné členy - obracet se na ně můžeme pouze prostřednictvím členů té třídy, ve které
byly chráněné členy definované, nebo pomocí členů jakékoli třídy z dané třídy odvozené.

 Konstruktor má za úkol inicializaci členských dat. jedná se o speciální funkci, která je
automaticky volána při vytvoření objektu. Konstruktor musí mít stejné jméno jako třída. Tato
speciální funkce nemá žádný návratový typ ani void (nemůže tudíž obsahovat příkaz return).
 Pokud programátor nevytvoří ani jeden svůj konstruktor, pak je vytvořen implicitní
konstruktor, který však neinicializuje žádná členská data.

 Destruktor je opakem konstruktoru. Nelze však přetížit a nemá žádné parametry.

Příklad
Příklad výpisu textu na obrazovku pomocí projektu a objektově orientovaného přístupu:

//*** Příklad - NAPIS.H ***//
/* soubor - NAPIS.H */
/* hlavičkový soubor obsahující deklarace třídy */
class Napis{
 private:
 char text[100];
 public:
 Napis(char p[]); // první konstruktor - deklarace
 Napis(); // druhý konstruktor - deklarace
 void vypis(); // deklarace další metody
 };
/*** NAPIS.H ***/

/* soubor - NAPIS.CPP */
#include <iostream.h>
#include <string.h>
#include "napis.h"

//definice metod
Napis::Napis(char p[])
{

6

 strcpy(text,p);
}

Napis::Napis()
{
 strcpy(text,"Konstruktor bez parametru");
}

void Napis::vypis()
{
 cout << text << endl;
}
/*** NAPIS.CPP ***/

/* soubor - HLAVNI.CPP */
#include "napis.h"

// definice globalni instance
Napis prvni("Prvni vypis");
Napis druhy("Druhy vypis");
Napis treti("Treti vypis");
Napis ctvrty;

int main()
{
 prvni.vypis();
 druhy.vypis();
 treti.vypis();
 ctvrty.vypis();
 return 0;
}
/*** HLAVNI.CPP ***/
//*** Konec příkladu ***//

 2.2. Dědičnost - inheritance
 Inheritance umožňuje přidat k základní (rodičovské nebo bázové) třídě T1 další vlastnosti
nebo stávající vlastnosti modifikovat a vytvořit novou odvozenou (podtřídu neboli potomka)
třídu T2. Programovací jazyk C++ umožňuje vytvářet inheritanci následujících typů:
Jednoduchá inheritance - třída má jen jednoho předka (rodiče). Vytváříme stromovou
hierarchii tříd. Třídu v nejvyšší úrovní označujeme jako kořenovou třídu.
Vícenásobná inheritance - třída má více předků.
Opakovaná inheritance - třída může zdědit vlastnosti některého (vzdálenějšího) předka více
cestami. Vztahy tříd v hierarchii jsou znázorňovány orientovaným acyklickým grafem (direct
acyclic graph - DAG), označovaným také jako graf příbuznosti tříd.

class T1{
 private: //soukromé datové prvky
 public: //veřejně přístupné metody
 }
 class T2: public T1{ //třída T2 je potomkem třídy T1
 private: //soukromé datové prvky
 public: //veřejně přístupné metody
 }

7

8

3. Nové prvky jazyka C++
Jazyk C++ obsahuje oproti jazyku C další klíčová slova:

class delete friend inline new operator
private protected public template this virtual

 V jazyce C se pro ukazatele, které nemají nikam ukazovat používá makro NULL, která
má obvykle hodnoty 0, 0L nebo (void*)0. V C++ je možné tohoto makra rovněž použít. Existují
však situace, kde NULL může působit problémy, proto se doporučuje používat raději 0.

 V novějších překladačích jazyka C++ (např. Borland C++ 5.0) se objevuje nový datový
typ bool, který se řadí mezi celočíselné typy a který může nabývat hodnot false (0) a true (1).

 Programovací jazyk C++ podporuje komentáře jazyka C a navíc vytváří nový typ.
// vše od dvou lomítek až do konce řádku je bráno jako komentář

 Jazyk C++ zavádí tzv. reference, které představují zvláštní druh proměnné. Na reference
se můžeme dívat jako na jiná jména existujících proměnných. Deklarují se podobně jako
ukazatele, jen místo znaku “*” vkládáme znak “&”. Jakmile však referenci deklarujeme, bude již
stále ukazovat na tutéž proměnnou. V C++ rovněž nemůžeme deklarovat ukazatele na reference a
pole referencí. Nelze také deklarovat reference na typ void (void&). Reference se nejčastěji
používají při volání funkci k předávání parametrů odkazem.
 int prom;
 int &ref_prom; //reference
 int *uk_prom; //ukazatel

 ref_prom = 20; //je to samé jako: prom=20;
 uk_prom = &ref_prom;//je to samé jako: uk_prom=&prom;

 Konstanty se deklarují následujícím způsobem:
 const float pi = 3.14159; //nebo float const pi = 3.14159;
Konstantu nelze měnit a tudíž je ji nutné inicializovat na určitou hodnotu. Naše konstanta pi
představuje hodnotu typu float, ale nejedná se o l-hodnotu, to znamená, že nemůže stát na levé
straně přiřazovacího výrazu.
 pi = 3.14; //Nelze!!!
V jazyku C++ je možné napsat:
 const int M = 500;
 double pole[M]; //podobný zápis v jazyku C nebyl možný
Použití konstant je vhodnější než používání maker jako v jazyce C. Je vhodné se vyhnout
častému používání maker, které se naopak v jazyce C používala ve velké míře.

 Pomoci rozlišovacího operátoru “::” (čtyřtečka) můžeme volat jinak zastíněné globální
proměnné. Příklad:
 int i=10; //globální proměnná
 void fce()
 {
 int i=20; //lokální proměnná
 cout << i << endl << ::i <<endl; // nejprve se vypíše
//hodnota lokální a na druhý řádek globální proměnné }

9

 Struktury (struct) a unie (union) patří mezi objektové typy (položky mohou být datové
typy i metody). Struktura má všechny své prvky implicitně public a přístupová práva lze
selektivně změnit. Unie mají přístupová práva implicitně rovněž public, ale není je možné
změnit. V C++ mohou unie také představovat objektové typy, ale s omezeními: nemohou mít
předky ani potomky, jejich prvky nesmí být instance objektového typu s konstruktorem,
destruktorem nebo přetíženým operátorem “=”. Samotné unie své konstruktory mít mohou.

3.1. Proudový vstup a výstup
 C++ má nové možnosti usnadňující vstup a výstup. Standardní výstupní proud cout
nahrazuje stdout a vstupní proud cin, který nahrazuje stdin . Pro chybová hlášení se používá
výstupní proud cerr. Proudy a zdroj nebo cíl jsou spojeny s přetíženými operátory << (operátor
insertion, pro výstup do proudu) a >> (operátor extration, pro vstup z proudu).
 Všechny vstupní a výstupní operátory a manipulátory jsou definovány v externí run-time
knihovně, a proto je potřeba provést vložení hlavičkového souboru iostream.h.
Příklad:
#include <iostrem.h>
 //deklaruje základní rutiny pro zpracování proudů

void main(void)
{
 int i;

 cout << "Zadej číslo: " // výstupní proud

cin >> i; // vstupní proud
 cout << "Číslo je: " << i;
}
cout - výstupní proud, který zasílá znaky na standardní výstup stdout pomocí operátoru <<
cin - vstupní proud připojený na standardní vstup pomocí operátoru >>, umí zpracovávat všechny
standardní typy dat
iostream.h - standardní hlavičkový soubor, který nahrazuje řadu funkci ze stdio.h
 Formátování se provádí pomocí manipulátorů. Jedná se speciální operátory podobné
funkcím. Tyto operátory používají jako svůj argument odkaz na proud, který také vracejí. Proto
mohou být součástí příkazu výstupu. Manipulátory jsou definovány v hlavičkové souboru
iostream.h.

manipulátor zápis činnost
dec outs << dec

ins >> dec
nastaví vlajku desítkové konverze

hex outs << hex
ins >> hex

nastaví vlajku šestnáctkové konverze

oct outs << oct
ins >> oct

nastaví vlajku osmičkové konverze

ws ins >> ws odstraňuje bílé znaky
endl outs << endl vloží konec řádku a vyprázdní bufer
ends outs << ends přidá k řetězci ukončovací nulu
flush outs << flush vyprázdní bufer výstupního proudu
setbase(int) outs << setbase(n) nastaví číselnou bází na n (0,8,10,16)

0 představuje desítkový základ

10

resetiosflags(long) ins >> resetiosflags(l)
outs << resetiosflags(l)

zruší specifikované formátovací bity

setiosflags(long) ins >> setiosflags(l)
outs << setiosflags(l)

nastaví specifikované formátovací bity

setfill(int) ins >> setfill(n)
outs << setfill(n)

nastaví znak výplně na n

setprecision(int) ins >> setprecision(n)
outs << setprecision(n)

nastaví fp přesnost na n číslic

setw(int) ins >> setw(n)
outs << setw(n)

nastaví šířku výstupu na n pozic

Příklad:
 int cislo = 200;
 cout.fill($);
 cout.width(4);
 cout << cislo; //zobrazí se $200.

3.2. Funkce

3.2.1. Nové prvky
Funkční prototypy v C++ mohou mít nastaveny implicitní hodnoty některých parametrů.

Pokud se při volání dané funkce odpovídající argument vynechá, bude za něj dosazena implicitní
hodnota.
 int Funkce(float f=6.1, int i =10);
 //......
 Funkce(3.14, 25); // oba implicitní parametry budou přepsány
 Funkce(2.5); // stejné jako volání Funkce(2.5,10);
 Funkce(); // stejné jako volání Funkce(6.1,10);
Pozor! Vynechá-li se první parametr, musí se vynechat i všechny následující.
 Programovací jazyk C++ zavádí nové klíčové slovo inline, které způsobí zkopírování
funkce na každé místo v kódu, kde je daná funkce volána. Funkce se bude chovat podobně jako
by byla makrem. Na rozdíl od maker však umožňuje typovou kontrolu.

3.2.2. Odkazy
 V jazyce C jsou dvě možnosti, jak předávat parametry funkcím:
1. Volání hodnotou - předává se samotná proměnná a funkce si vytváří vlastní lokální kopii na

zásobníku. Takový způsob není vhodný pro svou časovou a paměťovou náročnost u parametrů
s větším datovým typem.

2. Jazyk C neumí předávat parametry odkazem, ale umožňuje předání adresy, které je pro větší
datové struktury výhodnější než první způsob.

V jazyce C++, kromě výše uvedených variant, již existuje možnost předávání parametrů
odkazem - raději funkce s parametry volanými referenci..

Příklad:
 void swap(int &a, int &b)

11

 {
 int pom;

 pom=a;
 a=b;
 b=pom;
 }

void main(void)
{
 int X=10, Y=20;

 swap(X, Y); // vymění se hodnoty proměnných X a Y
 cout << "X je: " << X <<” Y je:” << Y << endl ;
}

 Funkce mohou odkazem vracet vypočtený výsledek (funkce vrací referenci). Takovýmto
funkcím se říká referenční. V příkazu return musí být uvedena l-hodnota vraceného typu.
Příklad:
 int pole[20];
 int gl;
 int &fce(int i)
 {
 if ((i<0) || (i>19)) return gl;
 else return pole[i];
 }
 //. . .
 x = fce(3); // stejné jako: x = c[3];
 fce(10) = 150; // stejné jako: x[10] =150;

 3.2.3. Přetížené funkce
 Díky možnosti přetěžovat funkce je program čitelnější. Chceme-li napsat dvě různé
funkce s dvěma různými argumenty, mohou mít obě funkce stejný název různé argumenty.
Příklad čtyř funkcí se stejným jménem, ale různým návratovým typem nebo různými parametry.
 void fce(); // funkce č.1
 int fce(int); // funkce č.2
 float fce(flaot); // funkce č.3
 int fce(float, double); // funkce č.4
Zavoláme-li v programu funkci fce(100);, překladač vyvolá funkci č.2. Je však potřeba dávat
pozor na jednoznačnost zápisu. Příklad využití:
 int abs(int n)
 {
 return (n < 0) ? n*(-1):n;
 }
 double abs(double n)
 {
 return (n < 0) ? n*(-1):n;
 }
V případě, že by možnost přetěžovat funkce nešlo, museli bychom napsat různé funkce pro různé
datové typy. Například funkce int abs_i(int n); a double abs_d(double n); a podobně.

3.2.4. Funkce main
 Jazyk C++ klade na funkci main více omezení než jazyk C: funkce main() musí být typu
int nebo void, nelze ji rekurzivně volat, nesmíme získávat a používat její adresu, funkce může

12

mít až dva parametry přesně určených typů (int maim(int argc, char *argv[])), musí se použít
volací konvence jazyka C (explicitně uvést identifikátor _cdecl).

Příklady
1. Vytvořte přetížené funkce typ mabs(typ n);, které budou vracet absolutní hodnotu čísel typu

int, double, long.
2. Vytvořte přetížené funkce void Tisk(typ prom);, které budou vypisovat na obrazovku

proměnnou typu int, double, char, char *.
3. Vytvořte funkci int Suma(int dolni=1, int horni=50,int krok=1); , která bude vracet součet

celých čísel od dolní hranice do horní, krok udává vzdálenost mezi sousedními čísly. Volejte
funkci s různě nastavenými parametry.

3.3. Práce se soubory
 Formátovaný vstup a výstup je praktický shodný i při práci se soubory. Rozdíl je
v hlavičkovém souboru, který musíme k programu připojit a také v označení tříd, pomocí kterých
se přístup k souboru realizuje. Jsou to ofstream pro výstup a ifstream pro vstup. Implicitně práce
se vstupním nebo výstupním proudem probíhá v textovém režimu.
 Hierarchie tříd vztahující se k datovým tokům pro soubory:

 3.3.1. Otevření a uzavření souboru
 Otevření souboru je možné dvěma způsoby: při vzniku objektu (u konstruktoru je
uvedena cesta k souboru) a nebo pomocí členské funkce open (v tomto případě je volán
implicitní konstruktor bez parametrů). Uzavření souboru se obdobně provádí dvěma způsoby:
automaticky destruktorem při zániku objektu nebo členskou funkci close.

Otevření pomocí konstruktoru
ifstream(const char *name, int mode = ios::in, int = filebuf::openprot);
ofstream(const char *name, int mode = ios::out, int prot = filebuf::openprot);
fstream(const char *name, int mode = ios::in, int prot = filebuf::openprot);

První parametr je cesta k souboru, druhý parametr jsou atributy otevření souboru (viz. tabulka),
třetí parametr je pro sdílení souboru.

 ios

 istream ostream

iostream

 ifstream ofstream

 fstream

13

 Režim popis činnosti
ios::app připojuje data na konec souboru
ios::ate nastaví se na konec souboru
ios::in při otevření nastaví režim čtení (implicitní pro ifstream)
ios::out při otevření nastaví režim zápis (implicitní pro ofstream)
ios::binary otevře soubor v binárním režimu
ios::trunc pokud soubor existuje, zruší jeho obsah (implicitní je-li ios::out a není buď

ios::ate nebo ios::app)
ios::nocreate otevření se neprovede, pokud soubor neexistuje
ios::noreplace existuje-li soubor, zhavaruje otevření pro výstup, není-li nastaveno ios::app

nebo ios::ate

Možné parametry pro sdílení:
 filebuf::sh_compact - stejné jako implicitní hodnota filebuf::openprot, soubor lze sdílet,
pokud to povolí operační systém
 filebuf::sh_none - soubor nelze sdílet
 filebuf::sh_read - soubor lze sdílet jen při čtení

/*************** příklad ****************/
#include <fstream.h>

void main(void)
{
 ofstram of(“soubor.dat”,ios::out, ios::binary);

 if (of != 0)
 {
 float f;
 for (int i = 0; i<50, i++)
 {
 f=i*i;
 of.write((const char *)&f, sizeof(f));//neformátovaný zápis
 }
 of.close();
 }
}
/***************** konec *******************/

Otevření pomocí členské funkce
 Funkce open má stejné parametry jako konstruktor.
Deklarace ve třídě ifstream:

void open(const char *name, int mode,int prot=filebuf::openprot);
Deklarace ve třídě ofstream:
 void open(const char *name, int mode,int prot=filebuf::openprot);
Deklarace ve třídě fstream:
 void open(const char *name, int mode,int prot=filebuf::openprot);
Uzavření souboru se provede členskou funkci close, která nemá žádné parametry.
 void close();

14

/*************** příklad ****************/
#include <fstream.h>

void main(void)
{
 int hod=123;
 ofstream os;

 os.open("POKUS.DDD", ios::out); //otevření pro zápis
 os << hod;
 os.close();

 hod=0;
 ifstream is;
 is.open("POKUS.DDD", ios::in); //otevření pro čtení
 is >> hod;
 cout << hod << endl;
 is.close();
}
/***************** konec *******************/

 3.3.2. Formátový a neformátový vstup a výstup
 Při formátovém zápisu do souboru se používá přetížený operátor << a pro čtení >>.
Operátory se používají stejným způsobem jako pro standardní zařízení.
 Pro neformátový zápis a čtení se používají funkce:
 ostream &write(const signed char *, int n);
 ostream &write(const unsigned char *, int n);
 istream &read(signed char *, int n);
 istream &read(unsigned char *, int n);
První parametr je adresa pole obsahující zapisována data, (pole, do kterého se uloží přečtená
data). Druhý parametr je počet zapisovaných (čtených) bytů.
Pro neformátový zápis jednoho znaku se používá funkce put.
 ostream put(char);
Funkce get slouží pro neformátové čtení řetězce a také jednoho znaku.
 istream& get(char*, int len, char = '\n');

istream& get(signed char*, int len, char = '\n');
istream& get(unsigned char*, int len, char = '\n')
istream& get(char&);
istream& get(signed char&);
istream& get(unsigned char&);

3.3.3. Přímý přístup k souboru
 Pro zjištění pozice vstupu (čtení) je funkce tellg a pro zjištění pozice výstupu (zápisu) je
funkce tellp.
 long tellg();
 long tellp();

15

 Pro nastavení pozice pro vstup (čtení) slouží funkce seekg a pro nastavení pozice pro
výstup (zápis) je funkce seekp.
 ipstream& seekg(streampos pos);

ipstream& seekg(streamoff off, ios::seek_dir);
 opstream& seekp(streampos pos);

opstream& seekp(streamoff off,ios::seek_dir);
První parametr udává pozici, druhý může nabývat hodnot, které jsou definované v třídě ios:
 beg - hodnota prvního parametru je vztažena k počátku souboru
 cur - hodnota prvního parametru je vztažena vzhledem k aktuální pozici v souboru
 end - hodnota prvního parametru je vztažena ke konci souboru

3.4. Dynamická alokace paměti
 Jazyk C++ nabízí nové operátory pro alokaci a uvolnění paměti a to operátor new a
delete. Je sice dále možné používat funkcí jazyka C (malloc, free ...), ale není to moc vhodné,
neboť tyto funkce neví kromě potřebné velkosti nic o dané proměnné. Naproti tomu operátor new
zná třídu objektu, automaticky volá její konstruktor a také vrací příslušný typ ukazatele (není
třeba přetypovávat, během přiřazení probíhá typová kontrola).
 Dealokace paměti, která byla alokována operátorem new, se musí provést pomocí
operátoru delete. Tento operátor automaticky volá destruktor třídy.

 3.4.1. Operátor new
 Za klíčové slovo new píšeme označení typu proměnné, kterou chceme alokovat. Operátor
vybere z volné paměti potřebné místo a vrátí ukazatel na ně. Pokud se operace nepodaří vrátí
hodnotu 0, což nepředstavuje platnou adresu.
Příklad:
 long double *prom;
 prom = new long double;
 if (!prom) Chyba();
 //jestliže se alokace nezdařila, voláme funkci Chyba()
Chceme-li dynamickou proměnnou při alokaci inicializovat na určitou hodnotu, zapíšeme tuto
hodnotu do závorek za jméno typu:
 long double *prom;
 prom = new long double(55.66);
 if (!prom) Chyba();
Při alokaci pole napíšeme k datovému typu do hranatých závorek počet prvků pole. V tomto
případě však nelze použit inicializaci prvků. Jejich hodnoty musíme nastavit dodatečně.
 int *pole;
 pole = new int[100];
Operátor new může alokovat rovněž vícerozměrná pole. Je potřeba si však uvědomit, že jazyk
C++ zná pouze pole jednorozměrná a vícerozměrná pole nahrazuje poli jednorozměrnými, jehož
prvky jsou opět pole.
 int matice[10][20];
 matice = new int[10][20];

 3.4.2. Operátor delete
 Operátor delete je unární a jeho jediným operandem je ukazatel na proměnnou, kterou
chceme uvolnit.

16

 delete prom;
Pozor! Operátor delete proměnnou z paměti sice uvolní, ale příslušný ukazatel bude stále
ukazovat do stejného místa v paměti, kde se dynamická proměnná nacházela. Doporučuje se po
dealokaci přiřadit příslušnému ukazateli hodnotu 0. Dealokace paměti se smí provést pouze
jedenkrát, jinak může dojít nekontrolovatelnému chování programu. Ukazatel s hodnotou 0 lze
však dealokovat bezpečně bez vedlejších efektů.
 Při uvolňování dynamicky alokovaného pole se hranaté závorky píší za operátor delete.

delete [] pole;

3.5 Přetížený operátor
Dalším rozšířením jazyka je možnost přetížit nejen funkce, ale i operátory. To znamená

určit jim činnost v závislosti na kontextu. Toto je možné, neboť operátor je v C++ chápan jako
funkce s jedním parametrem (unární operátor) nebo se dvěma parametry (binární operátor). Při
definici pak jméno rozšiřujeme o klíčové slovo operator @, kde znak @ nahrazuje přetížený
operátor. Pozor, nelze však přetížit například operátory ?:, .*, ::, sizeof a . (přístup ke
strukturám). U přetížení operátoru ++ a – nelze určit zda se jedná o postfixový nebo prefixový
přístup.
Příklad:
#include <iostrem.h>
struct complex
{
 double re,im;
};

//definice přetíženého operátoru
complex operator+(complex a, complex b)
{
 complex pom;

 pom.re=a.re+b.re;
 pom.im=a.im+b.im;
 return pom;
}

//přetypování výstupního operátoru
ostream &operator<<(ostream &vys, complex x)
{
 vys << x.re << “ + i.” << x.im;
}

int main()
{
 complex VYS,X(1.0,2.0),Y(3.0,4.0);

 VYS=X+Y;
 cout << VYS << endl;

 return 0;
}

17

4. Objektově orientované programování v jazyku C++

 4.1. Třídy a instance

 4.1.1. Konstrukce třídy
 Jak již bylo uvedeno v kapitole o základech objektově orientovaného programování,
zavádí jazyk C++ nový typ a to je třída (class). Třída je uživatelsky definovaný typ a obsahuje
jak členská data, tak i členské funkce. Pro deklaraci třídy je možné využít klíčová slova class,
struct i union. Struktura má všechny své prvky implicitně public a přístupová práva lze
selektivně změnit. Unie mají přístupová práva implicitně rovněž public, ale není je možné
změnit. Třída vytvořena pomocí slova class má implicitně hodnotu přístupového atributu privat
a je ji možné selektivně změnit.
 public: povoluje vnější přístup k prvkům třídy
 private: zakazuje vnější přístup k prvkům třídy
 protected: označují se takto prvky nepřístupné vzdáleným přístupem z vnějšku třídy,
ale procházející děděním do odvozených tříd.
Nastavení přístupových práv lze v deklaraci provést vícekrát a v různém pořadí.

 4.1.2. Datové prvky
 Kromě jednoduchých datových typů a polí prvků jednoduchých typů mohou být ve třídě
deklarovány také prvky s typem jiné třídy. Při deklaraci prvků je potřeba dbát na některá
omezení:

 prvky nesmí být konstantní (např. const float pi; - chyba!). Je-li potřeba ve třídě používat
symbolicky označené konstantní prvky, pak se zavedou jako statické konstantní datové prvky
a tím jsou společné pro všechny objekty třídy. (v deklaraci třídy se uvede static const float pi;
a v implementačním textu třídy pak static const float pi=3.14;).

 prvky nesmí být přímo inicializovány na určitou hodnotu (např. int pr=15; - chyba!). Tato
chyba je pochopitelná, když si uvědomíme, že se jedná o deklaraci, při níž se prvku ještě
nepřiděluje paměť! Inicializace se provádí až prostřednictvím konstruktoru (s výjimkou
statických prvků).

 na rozdíl od metod (členských funkcí) nesmíme prvky přetížit, tedy různé datové prvky nesmí
mít stejná jména.

Datové prvky by měly mít přístupový atribut private a přístup k nim by měly zajišťovat pouze
k tomu účelu zavedené metody.

 4.1.3. Standardní metody - konstruktor a destruktor
 Jak již bylo dříve uvedeno konstruktor je standardní metoda každé třídy, která se stará o
vytvoření objektu. Konstruktor nic nevrací a nesmí být typován ani jako void. Při vytváření
vlastní třídy máme následující možnosti:

 Nedefinujeme žádný konstruktor. V tom případě si ho kompilátor vytvoří sám (tzv. implicitní
konstruktor). V implicitním konstruktoru je volán konstruktor bez parametrů bázové třídy a
konstruktory bez parametrů pro vytvoření vnořených objektů. V případě, že takové
konstruktory neexistují, překladač indikuje chybu.

18

 Definujeme jeden konstruktor. Ten může mít stejně jako každá jiná metoda parametry včetně
jejich inicializace. Jakmile je nějaký konstruktor definován, nevytvoří se implicitní
konstruktor.

 Přetížíme konstruktor (definujeme více konstruktoru). Tato varianta umožňuje různé způsoby
inicializace objektu.

 Je možné také vytvořit tzv. kopírovací (copy) konstruktor, který dokáže inicializovat objekt
podle vzoru realizovaného jiným, již existujícím objektem téže třídy.

Příklad: kopírovací konstruktor
class A
{
 private:
 int i;
 public:
 A(int j) {i=j;}
 A(A &vzor) {i=vzor.i;}
}

int main()
{
 A prvni(10);
 A druhy(prvni); //copy konstruktor
 A treti=prvni; //copy konstruktor

}

 Destruktor je rovněž standardní metoda každé třídy, která provádí činnost související
s rušením objektu. Není-li ve třídě destruktor explicitně definován, kompilátor vytvoří implicitní
destruktor. Explicitní destruktor se jmenuje stejně jako třída a před její jméno se vloží “~”, nesmí
mít žádné parametry, nic nevrací, nesmí být přetížen, musí být deklarován jako public. Překladač
volá destruktor automaticky v okamžiku zániku odpovídající proměnné (např. při opuštění
příslušného bloku, dané funkce nebo při ukončení programu). Destruktory se volají v obraceném
pořadí než konstruktory.
Příklad zápisu:
 class NejakaTrida
 {
 private:
 int a; //členská data
 int b; //členská data
 public:
 NejakaTrida(); // konstruktor bez parametrů
 NejakaTrida(int X, int Y);
// konstruktor s parametry
 ~NejakaTrida(); // destruktor
 int Vetsi(int X, int Y);
// deklarace nějaké další metody
 }

 4.1.4. Deklarace a definice metod
 Zatím jsme si ukazovali hlavně jakým způsobem se jednotlivé metody deklaruji uvnitř
třídy. Metody je však potřeba také definovat.

19

 Při definici jednotlivých metod nesmíme zapomenout, že identifikátor metody musí být
spojen s identifikátorem třídy. Oba identifikátory od sebe oddělujeme “::” (čtyřtečkou). Definice
metody se pak provádí až za deklaraci třídy.
 V každé metodě je ještě jeden skrytý parametr - ukazatel na instanci, pro niž se daná
metoda volala. Lze se na něj odvolat klíčovým slovem this. Překladač jej používá k tomu, aby
určil, s jakou instancí (objektem) pracuje.
 Jazyk C++ umožňuje definovat tělo metody uvnitř deklarace třídy. Takto definované
metody se překládají jako vložené (inline). Pokud chceme vytvořit inline metody a nechceme ji
definovat uvnitř deklarace třídy, připojíme v definici metody klíčové slovo inline.
 Kromě konstruktorů a destruktoru můžeme ostatní metody rozdělit na dvě základní
skupiny:
 - změnové - metody, jejichž účelem je nějakým způsobem změnit objekt.
 - přístupové - metody, které předávají hodnoty soukromých položek. Klíčové slovo const
na konci deklarace naznačuje, že daná metoda ponechává objekt beze změn.

V deklaraci třídy je možné zařadit prvky, které představují deklaraci typů (např. pomocí
konstrukcí struct, union, enum, class a typedef). Platí však jisté podmínky:
- typ struct a union je vně třídy použitelný bez ohledu na přístupový atribut (na rozdíl od typů
enum, typedef a class, které musí být deklarovány zásadně jako public, mají-li přístupny i vně
třídy).
Příklad:
 // začátek deklarace třídy
 class Cas
 {
 private:
 int sek, min, hod;
 public:
 Cas(int h, int m, int s){sek=s;min=m;hod=h};
 //konstruktor - inline
 void Zmenit(int h,int m,int s){sek=s;min=m;hod=h};
 //inline změnová metoda
 void NastavHod(int hod); // deklarace změnové metody
void NastavMin(int min); // deklarace změnové metody
void NastavSek(int sek); // deklarace změnové metody
 void Tisk() const; //přístupová metoda
 int DejHod()const; //přístupová metoda
 int DejMin()const; //přístupová metoda
 int DejSek()const; //přístupová metoda
~Cas(){ }; // destruktor - inline
 };
 // konec deklarace třídy

/***** definice metod *****/
void Cas::Tisk()const
{
 cout << hod << ‘:’ << min << ‘:’ << sek << endl;
}

int Cas::DejHod()const
{
 return hod; //hod označuje this->hod
}

int Cas::DejMin()const
{

20

 return min; //min označuje this->min
}

int Cas::DejSek()const
{
 return sek; //sek označuje this->sek
}

void Cas::NastavHod(int hod)
{
 this->hod=hod; //nutné použití parametru this
}

void Cas::NastavMin(int min)
{
 this->min=min; //nutné použití parametru this
}

void Cas::NastavSek(int sek)
{
 this->sek=sek; //nutné použití parametru this
}
/*** konec definic ***/

void main(void)
{
 Cas AktualniCas(13,47,55); //vytvoření instance třídy Cas

 AktualniCas.Tisk(); //vypis hodnot
 AktualniCas.NastavSek(0);
 //... další metody
 AktualniCas.Zmenit(14,15,16);
//... další metody
}
 Při bližší prohlídce programu jste si asi všimli, že konstruktor Cas(int h,int m,int s); a
metoda void Zmenit(int h,int m,int s); dělají vlastně stejnou činnost a jednu z metod by bylo
možné vynechat. Není to však vhodné, neboť konstruktor je překladačem automaticky volán ve
chvílích, v nichž to považuje za důležité. Obyčejná metoda ke stejnému postupu překladač nikdy
nepřiměje. Konstruktor tedy není obyčejnou metodou zastupitelný. V případě, že bychom se
snažili využívat jen konstruktor, bychom opět narazili na problém v okamžiku, kdy bychom
chtěli již dříve vytvořené instanci změnit hodnoty. Konstruktor totiž vždy vytváří novou instanci.
 Všechny metody samozřejmě nemusí být pouze public, ale v jistých případech je vhodné,
aby byly soukromé pro danou třídu. Pak jejich volání mohou využívat jen ostatní metody dané
třídy. Tyto členské funkce pak nejsou přístupné z vnějšku třídy a může je používat jen daná třída.

Příklad
Vytvořte třídu “Datum”, která umožní pracovat s datumovými hodnotami den, měsíc, rok.
Vytvořte soukromé metody třídy, které budou kontrolovat správné hodnoty dne, měsíce, roku.
Bude-li hodnota špatná, vrátí metoda nejbližší správnou.
// *** Příklad - vytvoření třídy Datum *** //
#include <iostream.h>
#include <string.h>
#include <dos.h>
#include <conio.h>

21

// zacatek deklarace tridy Datum
class Datum
{
 private:
 int den, mesic, rok;
 // Privat metody pro kontrolu spravnych udaje, je-li hodnota nevyhovujici,
 // vrati metoda nejblizsi spravnou hodnotu.
 int SpravnyDen(int d);
 int SpravnyMesic(int m);
 int SpravnyRok(int r);
 public:
 Datum();
 Datum(int d, int m, int r);
 Datum(int d, char *m, int r);
 void VypisDatum() const;
 int DejDen() const;
 int DejMesic() const;
 int DejRok() const;
 void ZmenDatum(int d, int m, int r);
 void ZmenDen(int d);
 void ZmenMesic(int m);
 void ZmenRok(int r);
 ~Datum() {}
};
// konec deklarace tridy Datum

// definice metod
int Datum::SpravnyDen(int d)
{
 if (d>=1 && d<=28) return d;
 else
 if (d<1) return 1;
 else
 {
 if (mesic==1 || mesic==3 || mesic==5 || mesic==7 || mesic==8 ||
mesic==10 || mesic==12)
 if (d>31) return 31;
 if (mesic==4 || mesic==6 || mesic==9 || mesic==11)
 if (d>30) return 30;
 if (mesic==2)
 if ((rok-1980)%4 == 0)
 if (d>29) return 29;
 else return d;
 else
 if (d>28) return 28;
 }
}

int Datum::SpravnyMesic(int m)
{
 if (m<1) return 1;
 else
 if (m>12) return 12;
 else return m;
}

int Datum::SpravnyRok(int r)
{
 // Chceme pouzit rok pouze v rozmezi 1980 - 1999.

22

 if (r<1980) return 1980;
 else
 if (r>1999) return 1999;
 else return r;
}

Datum::Datum()
{
 struct date d;

 getdate(&d);
 rok= d.da_year;
 mesic= d.da_day;
 den= d.da_mon;
}

Datum::Datum(int d, int m, int r)
{
 rok=SpravnyRok(r);
 mesic=SpravnyMesic(m);
 den=SpravnyDen(d);
}

Datum::Datum(int d, char *m, int r)
{
 rok=SpravnyRok(r);
 if (strcmp(m,"leden")==0) mesic=1;
 else
 if (strcmp(m,"unor")==0) mesic=2;
 else
 if (strcmp(m,"brezen")==0) mesic=3;
 else
 if (strcmp(m,"duben")==0) mesic=4;
 else
 if (strcmp(m,"kveten")==0) mesic=5;
 else
 if (strcmp(m,"cerven")==0) mesic=6;
 else
 if (strcmp(m,"cervenec")==0) mesic=7;
 else
 if (strcmp(m,"srpen")==0) mesic=8;
 else
 if (strcmp(m,"zari")==0) mesic=9;
 else
 if (strcmp(m,"rijen")==0) mesic=10;
 else
 if (strcmp(m,"listopad")==0) mesic=11;
 else
 if (strcmp(m,"prosinec")==0) mesic=12;
 else mesic=1; //hodnota v pripade chybneho retezce
 den=SpravnyDen(d);
}

void Datum::VypisDatum() const
{
 cout << den << '.' << mesic << '.' << rok << endl;
}
int Datum::DejDen() const
{
 return den;

23

}
int Datum::DejMesic() const
{
 return mesic;
}

int Datum::DejRok() const
{
 return rok;
}
void Datum::ZmenDatum(int d, int m, int r)
{
 rok=SpravnyRok(r);
 mesic=SpravnyMesic(m);
 den=SpravnyDen(d);
}
void Datum::ZmenDen(int d)
{
 den=SpravnyDen(d);
}
void Datum::ZmenMesic(int m)
{
 mesic=SpravnyMesic(m);
}
void Datum::ZmenRok(int r)
{
 rok=SpravnyRok(r);
}
// konec definice metod

int main()
{
 Datum d1;
 Datum d2(13,2,1998);
 Datum d3(13,"cervenec",1998);

 clrscr();
 d1.VypisDatum();
 d2.VypisDatum();
 d3.VypisDatum();

 d1.ZmenDatum(29,2,1998);
 d2.ZmenDatum(29,2,1980);
 d3.ZmenDatum(-1,-1,1980);

 cout << endl;
 d1.VypisDatum();
 d2.VypisDatum();
 d3.VypisDatum();
 getch();
 return 0;
}
// *** Konec příkladu *** //

 4.1.5. Statické datové členy a funkce
 Statické členy třídy definujeme pomocí klíčového slova static a jsou sdíleny všemi
instancemi dané třídy. Statické prvky jsou uloženy mimo objekty dané třídy a existují nezávisle

24

na jednotlivých instancích. Dokonce i v případě, že neexistuje žádná instance dané třídy. Před
použitím instancí nesmíme zapomenout inicializovat statická členská data.

 Statické metody se většinou chovají jako běžné řadové funkce a liší se od nich obvykle
pouze přístupovými právy. Můžeme je volat přímo, bez prostřednictví své instance. Statické
metody nemohou být virtuální a nemohou se přetížit.
Příklad:
#include <iostream.h>

class stromy
{
 private:
 static int celkem; //celkový počet všech stromů
 int pocet; //počet stromů určitého druhu
 public:
 stromy(int p) {celkem+=p;pocet=p;} //konstruktor
 static void VypisCelkem(); //statická metoda
 void VypisDruhu();
};

void stromy::VypisCelkem()
{
 cout << "Celkový počet všech stromů " << celkem << endl;
}
void stromy::VypisDruhu()
{
 cout << "Počet stromů jednoho druhu " << pocet << endl;
}

int stromy::celkem=0; //inicializace statických členských dat

int main()
{
 stromy smrk(10), jedle(2), borovice(8);

 smrk.VypisDruhu();
 jedle.VypisDruhu();
 borovice.VypisDruhu();

 stromy::VypisCelkem(); //volání statické metody

 return 0;
}

 4.1.6. Přátelé
 V reálném životě jsme obklopeni, kromě běžných, ostatních lidí, také zvláštní skupinou,
kterým říkáme přátele a máme k nim výjimečný vztah. Půjčujeme jim osobní věci, mohou nás
kdykoliv navštěvovat a jsme pro ně ochotni udělat téměř vše oč požádají.
 Podobná filosofie platí i v jazyce C++. Zapouzdření sice jasně vymezuje přístup ke
členům třídy, ovšem výjimka z tohoto pravidla jsou právě přátelé - friend. Přátelé mají plná

25

přístupová práva ke všem členům dané třídy, i když jimi nejsou. Nemohou však pracovat
s ukazatelem this. Přáteli se mohou stát jednotlivé funkce nebo i celé třídy.
class A
{
 friend int f() {......} //přátelská funkce
 friend class B; //přátelská třída
 friend int C::metoda(); //přátelská metoda jiné třídy
}

Příklad:
#include <iostream.h>

class rohliky;
class mleko
{
 private:
 int pocet;
 public:
 mleko(int p) {pocet=p;}
 friend int celkem(rohliky r, mleko m);
}
class rohliky
{
 private:
 int pocet;
 public:
 rohliky(int p) {pocet=p;}
 friend int celkem(rohliky r, mleko m);
}
int celkem(rohliky r, mleko m)
{
 return (r.pocet + m.pocet);
}
int main()
{
 mleko ml(50);
 rohliky rh(105);

 cout << celkem(ml,rh);
 return 0;
}

 4.1.7. Kompozice objektů
 Jako datové prvky třídy mohou být použity i objekty jiných tříd nebo ukazatele na objekty
jiných tříd. Je však samozřejmé, že prvkem třídy nemůže být objekt téže třídy. Takový prvek by
totiž rekurzivně volal konstruktor, bez ustanovení hloubky rekurze. Vložené objekty nebo
ukazatele na objekty se inicializují v konstruktorech dané třídy.
Příklad:
class AAA
{
 int pom;
 public:
 AAA(int p){pom=p;}
 int DejA()const {return pom;}
};

26

class CCC
{
 int hod;
 AAA a;
 AAA *b;
 public:
 CCC(int h);//:a(12),hod(h){}
 void Vypis();
 ~CCC(){delete b;}
};
CCC::CCC(int h):a(55),hod(h)
{
 b=new AAA(44); //alokace paměti s inicializaci hodnoty
}
void CCC::Vypis()
{
 cout << "hod= "<<hod<<endl;
 cout << "a.pom= "<<a.DejA()<<endl;
 cout << "b.pom= "<<b->DejA()<<endl;
}

int main()
{
 CCC c(1000);

 c.Vypis();

return 0;
}

Pokud je ve třídě vložený objekt tvořen dynamicky (viz. Prvek b), je potřebné definovat
explicitní konstruktor, ve kterém bude alokována paměť, a destruktor, v němž se paměť uvolní.

Součástí třídy může být rovněž ukazatel na objekt, který je však vytvořen nezávisle na
dané třídě (např. nějaký globální objekt). V tomto případě konstruktor nepřiděluje a destruktor
neuvolňuje paměť pro vložený objekt.

 4.2. Dědičnost - inheritance
 Inheritance znamená možnost přidávat k základní třídě další vlastnosti a vytvořit tak
odvozenou třídu. Jsou tři možnosti, jak třídu modifikovat: přidat nové datové členy, přidat nové
metody, překrýt metody novou definicí. V této kapitole se budeme zatím zabývat pouze
jednoduchou dědičností. Příklad dědičnosti:
 základní třída SAVCI - obsahuje vlastnosti společné pro všechny druhy savců
 odvozená třída KOČKOVITÉ_ŠELMY - obsahuje vlastnosti společné pro všechny
druhy savců a navíc specifické vlastnosti všech druhů kočkovitých šelem
 odvozená třída LEVHARTI - obsahuje vlastnosti společné pro všechny druhy savců,
specifické vlastnosti všech druhů kočkovitých šelem a navíc specifické vlastnosti společné všem
levhartům
Třída T2 odvozená od základní třídy T1 se deklaruje:
 class T1 : specifikace_přístupu T1 {....};
nebo
 struct T1 : specifikace_přístupu T1 {....};
Specifikace přístupu se provádí klíčovým slovem public, private nebo je prázdná (pak je
implicitně public, pokud T2 je struct, nebo private, pokud T2 je class).

27

Atributy přístupu prvků v T1 specifikace přístupu při

odvození T2 je public
specifikace přístupu při
odvození T2 je private

private -------- --------
public public private

protected protected private
-------- - znamená, že zděděný prvek je nepřístupný i pro přímý přístup v metodách
odvozené třídy. Zděděné metody takový prvek využívají stejným způsobem jako v základní třídě.
protected - zděděné prvky jsou využitelné ve vlastních metodách odvozené třídy. Nejsou
přístupné vnějším přístupem.
public - zděděné prvky jsou využitelné ve vlastních metodách odvozené třídy. Jsou
přístupné také i vnějším přístupem.

 Co se nedědí:

 konstruktor. Lze jej vyvolat v konstruktoru odvozené třídy.
 destruktor. Automaticky je volán v destruktoru odvozené třídy.
 přetížený operátor =, new, delete

 Při návrhu dědičnosti je potřeba postupovat uvážlivě a nevytvářet potomky tam, kde to
není vhodné. Mějme například třídu Datum a dále chceme vytvořit třídu osobních údajů Osoba,
která obsahuje údaje jako jsou jméno, příjmení, adresa a datum narození. Je asi jasné, že třída
Osoba není potomkem třídy Datum, ale pouze obsahuje vložený objekt dané třídy. Naopak
budeme-li chtít vytvořit třídu Zaměstnanec, která obsahuje stejné osobní údaje jako třída Osoba a
některá další specifická data a metody, pak Zaměstnanec je potomkem Osoby. Jednoduše
můžeme říct, že potomky tříd vytváříme, když si můžeme kladně odpovědět na otázku je?
(Zaměstnanec je Osoba). Kompozice se vytváří při otázce má? (Osoba má Datum).
Příklad:
#include <iostream.h>
#include <string.h>
#include <stdlib.h>

class RodneCislo
{
 private:
 char rodcis[12];
 int pohlavi; // 0 - zena, 1 - muz
 public:
 RodneCislo(char * r);
 char *DejRC() const;
 int DejDen() const;
 int DejMes() const;
 int DejRok() const; // rozmezi let 1900 - 1999
 int DejPohlavi() const;
 void ZmenRC(char *r);
};

class Osoba
{
 private:
 char jmeno[20],prijmeni[20];
 public:

28

 RodneCislo rc; // Kompozice
 Osoba(char *,char *, char *);
 char *DejJmeno() const;
 char *DejPrijmeni() const;
 void ZmenJmeno(char *);
 void ZmenPrijmeni(char *);
};

class Zamestnanec:public Osoba //Dědičnost
{
 private:
 long int plat;
 int provoz;
 public:
 Zamestnanec(char *,char *, char *, long int, int);
 int DejProvoz() const;
 long int DejPlat() const;
 void ZmenProvoz(int);
 void ZmenPlat(long int);
};

/*********** metody tridy RodneCislo ************/
RodneCislo::RodneCislo(char *r)
{
 strcpy(rodcis,r);
 pohlavi=DejPohlavi();
}

char *RodneCislo::DejRC() const
{
 char *pom;
 pom=new char[12];
 strcpy(pom,rodcis);
 return pom;
}

int RodneCislo::DejDen() const
{
 char pom[3];

 pom[0]=rodcis[4];
 pom[1]=rodcis[5];
 pom[2]='\0';
 return (atoi(pom));
}
int RodneCislo::DejMes() const
{
 char pom[3];
 pom[0]=rodcis[2];
 pom[1]=rodcis[3];
 pom[2]='\0';

 return (DejPohlavi()==0)?(atoi(pom)-50):atoi(pom);
}

int RodneCislo::DejRok() const
{
 char pom[3];

 pom[0]=rodcis[0];

29

 pom[1]=rodcis[1];
 pom[2]='\0';
 return (atoi(pom)+1900); //rozmezi let 1900 - 1999
}

int RodneCislo::DejPohlavi() const
{
 char pom[3];

 pom[0]=rodcis[2];
 pom[1]=rodcis[3];
 pom[2]='\0';

 return (atoi(pom)>50)?0:1;
}

void RodneCislo::ZmenRC(char *r)
{
 strcpy(rodcis,r);
 pohlavi=DejPohlavi();
}

/*********** metody tridy Osoba ************/
Osoba::Osoba(char *j,char *p, char *r):rc(r)
{
 strcpy(jmeno,j);
 strcpy(prijmeni,p);
}
char *Osoba::DejJmeno() const
{
 char *pom;
 pom=new char[20];
 strcpy(pom,jmeno);
 return pom;
}
char *Osoba::DejPrijmeni() const
{
 char *pom;
 pom=new char[20];
 strcpy(pom,prijmeni);
 return pom;
}
void Osoba::ZmenJmeno(char *j)
{
 strcpy(jmeno,j);
}
void Osoba::ZmenPrijmeni(char *p)
{
 strcpy(prijmeni,p);
}
/*********** metody tridy Zamestnanec ************/
Zamestnanec::Zamestnanec(char *j,char *p, char *r, long int pl, int pr)
 :Osoba(j,p,r)
{
 plat=pl;
 provoz=pr;
}
int Zamestnanec::DejProvoz() const
{
 return provoz;

30

}
long int Zamestnanec::DejPlat() const
{
 return plat;
}
void Zamestnanec::ZmenProvoz(int p)
{
 provoz=p;
}
void Zamestnanec::ZmenPlat(long int p)
{
 plat =p;
}
/******** pretypovani operatoru << ********/
ostream &operator<<(ostream &vys,RodneCislo r)
{
 vys << "Datum narozeni: " <<r.DejDen()<<'.'<<r.DejMes()<<'.'
 << r.DejRok();
 return vys;
}
ostream &operator<<(ostream &vys,Osoba o)
{
 vys << "Jmeno: " << o.DejJmeno() << endl
 << "Prijmeni: " << o.DejPrijmeni() << endl
 << "Rodne cislo: " << o.rc.DejRC() << endl;
 vys << o.rc << endl
 << "Pohlavi: " ;
 char pom[5];
 (o.rc.DejPohlavi()==0)?strcpy(pom,"zena"):strcpy(pom,"muz");
 vys << pom <<endl;
 return vys;
}
ostream &operator<<(ostream &vys,Zamestnanec o)
{
 vys << "Jmeno: " << o.DejJmeno() << endl
 << "Prijmeni: " << o.DejPrijmeni() << endl
 << "Rodne cislo: " << o.rc.DejRC() << endl;
 vys << o.rc << endl
 << "Plat : " << o.DejPlat() << endl
 << "Cislo provozu: " << o.DejProvoz() << endl
 << "Pohlavi: " ;
 char pom[5];
 (o.rc.DejPohlavi()==0)?strcpy(pom,"zena"):strcpy(pom,"muz");
 vys << pom <<endl;
 return vys;
}

//************ hlavni funkce ********************
int main()
{

 RodneCislo r("655510/5555");

 cout << r.DejDen()<<'.'<<r.DejMes()<<'.'<<r.DejRok()<<endl;
 cout << r.DejPohlavi()<<endl;
 cout << r << endl;

 Osoba Pavel("Pavel","Novacek","671210/4455");
 cout << Pavel;

31

 Zamestnanec Jiri("Jiri","Ferenc","641201/2225",120850,2);
 cout << Jiri;

 return 0;
}
/************ KONEC ************/

 4.3. Polymorfismus
 Překladač za normálních okolností využívá tzv. časnou vazbu (early binding), která při
volání metody vyhodnocuje typ instance již v době překladu. Potřebujeme-li však pracovat
s potomkem pomocí ukazatele na předka, dostaneme se do problému, neboť se zavolá místo
předefinované metody potomka původní metoda předka. Abychom se mohli vyhnout těmto
problémům, zavádí jazyk C++ tzv. virtuální metody.Třídy, které obsahují takovéto metody se pak
označují jako polymorfní.

 4.3.1. Virtuální metody
 Chceme-li se přenechat rozhodnutí, která překrytá metoda bude volána, až v průběhu
programu, musíme metodu označit klíčovým slovem virtual. Tímto dáváme překladači najevo, že
si přejeme využít dynamickou nebo-li pozdní vazbu (late binding) před statickou (nebo raději
časnou) vazbou (early binding).
Příklad:
#include <iostream.h>
#include <string.h>
#include <stdlib.h>
#include <conio.h>

class A
{
 int a;
 public:
 A(int h):a(h){cout << "Konstruktor A"<<endl;}
 virtual ~A(){cout << "Destruktor A"<<endl;}
 virtual void Tisk() const { cout <<"Trida A " << a << endl;}
 int DejA() const {return a;}
};
class B:public A
{
 int b;
 public:
 B(int h):A(h),b(h){cout << "Konstruktor B"<<endl;}
 virtual ~B(){cout << "Destruktor B"<<endl;}
 virtual void Tisk() const { cout <<"Trida B " << b << " A "<< DejA()<<
endl;}
};
int main()
{
 B bb(100); //U této instance se bude uplatňovat statická vazba
 //a překladač použije správnou metodu Tisk() ze tříd B
 A *pb; //U této instance chceme uplatnit dynamickou vazbu
 //a překladač použije správnou metodu Tisk() jedině,

//v případě, že je definovaná v rodiči jako virtuální metoda
 bb.Tisk();

 pb=new B(11); //Až nyní se rozhoduji pro instanci potomka
 pb->Tisk(); //Použije metodu ze třídy B

32

 delete pb; //Uvolní se paměť a zároveň se zavolají destruktory

 getch();
 return 0;
}
 Jestliže při volání virtuální metody nepoužijeme ukazatele, nemusí se pozdní vazba
uplatnit (např. bb.Tisk();).
 Pokud metodu označíme slovem virtual, pak se metoda automaticky stává virtuální i ve
všech potomcích. Klíčové slovo virtual není nutné v deklaraci potomků psát, ale z hlediska
přehlednosti se to doporučuje. Klíčové slovo se nepíše při definici virtuální funkce. Jakmile
některou metodu definujeme jako virtuální, překladač přidá ke třídě neviditelný ukazatel, který
ukazuje do speciální tabulky nazývané tabulka virtuálních metod (Virtual Method Table dále jen
VMT). Pro každou třídu, která má alespoň jednu virtuální metodu překladač vytvoří tabulku
virtuálních metod, ve které budou adresy všech virtuálních metod třídy. Tabulka je společná pro
všechny instance dané třídy. Adresa VMT se uloží automaticky do instance konstruktorem.
 Může definovat i virtuální destruktor. Někdy je to přímo nutnost definovat destruktor
jako virtuální. Máme-li například seznam různých objektů, který chceme vyprázdnit, musí se
skutečný typ destruktoru určit až v průběhu programu.
 Naopak konstruktory nemohou být virtuální, neboť před jejich voláním není ještě
vytvořena VMT. Uvnitř konstruktorů sice můžeme volat virtuální metody, ale ty se budou chovat
nevirtuálně. Důvodem je, že před voláním konstruktoru potomka, se musí nejprve volat
konstruktor předka a ten uloží do odkazu na VMT adresu tabulky virtuálních metod předka.
Teprve potom přijde na řadu konstruktor potomka s odkazy na VMT adresu tabulky potomka.
Podobná situace s odkazy je i u destruktorů,samozřejmě v opačném pořadí.
 Polymorfismus má samozřejmě i své stinné stránky. Potřebou vytvoření VMT se zvyšují
nároky na paměť, překladač musí zavést ukazatel VMT, volání virtuálních metod je pochopitelně
pomalejší, než metod nevirtuálních (někdy se říká statických, což není moc vhodné, neboť
statickou metodu jsme označovali metodu s klíčovým slovem static).

 4..3.2. Abstraktní a instanční třídy
 Při návrhu hierarchie tříd občas potřebujeme vytvořit základní rodičovskou třídu, od které
se budou vyvíjet všichni potomci, ale ze které nechceme vytvářet žádné instance. Pak takovou
třídu nazýváme abstraktní třída. Jazyk C++ nabízí možnost vytvořit čisté virtuální metodu (pure
virtual method), která se deklaruje takto:
 hlavička_metody=0;
Příklad:
class Objekt
{
 public:
 Objekt();
 ~Objekt();
 void Nakresli();
 void Smaz();
 virtual void Zobraz(int barva)=0;
};
V případě, že třída obsahuje alespoň jednu čistě virtuální metodu, pak překladač nedovolí
definovat instanci této abstraktní třídy. Ostatním třídám říkáme někdy instanční třídy.

33

4.3. Vícenásobná dědičnost
 Máme-li třídu vytvořit jako potomka více než jedné třídy najednou, hovoříme o tzv.
vícenásobné dědičnosti. Téměř každý problém lze sice zvládnout jen pomoci jednoduché
dědičnosti, ale mnohdy nám vícenásobná dědičnost zjednoduší a zkrátí dobu návrhu a řešení (viz.
datové proudy).
Příklad:
class A
{ //........ };
class B
{ //........ };
class C
{ //........ };
class ABC:public A,public B,public C
{
 //........
 public:
 ABC(int a, int b, int c):C(c),B(b),A(a) {//...}
};
 Pořadí rodičovských tříd při deklaraci třídy určuje pořadí volání konstruktorů
rodičovských tříd a opačné volání destruktorů těchto tříd. Je-li však při definici konstruktoru
potomka předepsáno pořadí volání rodičovských konstruktorů, pak toto pořadí má přednost před
pořadí v deklaraci třídy. Stejně jako u jednoduché dědičnosti může potomek zastoupit předka.
Přetypování ukazatele na třídu potomka na ukazatel na třídu předka se v C++ děje automaticky.
Obráceným způsobem se přetypování neděje automaticky, ale je potřeba je explicitně zajistit
pomocí příslušných operátorů.
 Při vícenásobné dědičnosti je však potřeba postupovat v návrhu opatrně. Může se
například stát, že dva nebo více předků obsahuje prvky stejného jména. Mějme například
rodičovskou třídu A, její dva potomky třídu B a C. Tyto dvě třídy mají pak společného potomka
třídu D. V takovémto případě je nutné třídu A
definovat jako virtuální bázovou třídu, aby se
v instanci třídy D, nevolal konstruktor třídy A
dvakrát.
Příklad:
class A
{ //..... };
class B: virtual public A
{ //..... };
class C: virtual public A
{ //..... };
class D: public B, public C
{ //..... };
 V případě, že třídu A zdědíme jak virtuálně, tak i nevirtuálně, se všechny virtuálně
zděděné podobjekty dané třídy sloučí. To znamená, že výsledná třída bude obsahovat tolik
podobjektů dané třídy A, kolikrát je tato třída nevirtuálním předkem, a jeden společný (sloučený)
podobjekt A za všechny virtuální předky třídy A.

Při vytváření konstruktorů platí, že nejprve se volají virtuální konstruktory v pořadí,v
němž jsou v deklaraci, a po nich nevirtuální konstruktory v pořadí určeném deklarací.
Destruktory se volají v opačném pořadí.

 A

 B C

 D

34

5. Šablony
 Šablona specifikuje, jak definovat skupinu příbuzných tříd. Mějme například vytvořenou
třídu zásobník, který uchovává celá čísla. Budeme-li však chtít pracovat v zásobníku s řetězci
znaků, je námi vytvořená třída nepoužitelná, přestože operace na zásobníku jsou stejné a jen se
změnil datový typ jednotlivých hodnot na zásobníku. Abychom nemuseli psát nový kód pro další
datový typ, poskytuje jazyk C++ nástroj umožňující vytvořit abstraktní vzor zvaný šablony
(templates). Někdy hovoříme také o generických nebo parametrizovaných konstrukcích.

 template <class typ> class AA{};

V lomených závorkách jsou formální parametry, které mohou být buď typové nebo hodnotové.
S hodnotovými parametry se setkáváme u obyčejných funkcí (int, unsigned, atd; nelze použit
objektové typy nebo pole). Můžeme u nich předepsat implicitní hodnoty. Naopak typové
parametry jsou uvedeny klíčovým slovem class (v novějších překladačích je možné použít i
typename) a specifikují datové typy.

Příklad šablony řadových funkcí (funkcí, které nejsou metodami tříd):

template <class typ> typ Maximum(typ a,typ b); //deklarace

template <class typ> typ Maximum(typ a,typ b)
// nebo template <typename typ> typ Maximum(typ a,typ b)
{
 return (a<b)<b:a;
}
Je však potřeba si uvědomit, že při generování instance šablony se neprovádějí ani triviální
konverze parametrů, to znamená,že s následujícím příkladem si naše šablona neporadí.
const int X=100;
char c=’A’;
int y=25;
cout << Maximum(X,Y); //chyba! V Borland C/C++ 3.1 pracuje!
cout << Maximum(c,Y); //chyba!
Cout << Maximum((int)c,Y); //správně
Deklarace šablon objektového typu má tvar

template <class typ> class AA;

template <class typ> class AA
{
 typ h;
 public:
 AA(typ x);
 typ DejA();
};
template <class typ> AA<typ>::AA(typ x)
{
 h=x;
}
template <class typ> typ AA<typ>::DejA()
{
 return h;
}

int main()

35

{
 AA<int> a(15); //instance šablony
 cout << a.DejA();

 return 0;
}

36

6. Výjimky
 Prostředky pro práci s výjimkami se objevují až v novějších překladačích jazyka C++
(Borland C++ 4.0, Visual C++ 2.0, Watcom C++ 10.5). Co je vlastně výjimka? Jedná se o
situaci, kdy program nemůže pokračovat obvyklým způsobem, nastane vlastně běhová chyba. Ne
vždy je možné program ukončit z důvodu běhové chyby. Některé aplikaci vyžadují, aby
v případě chyby se přes ní program určitým způsobem přenesl a pokračoval v další části.
 Jazyk C++ umožňuje pracovat pouze s tzv. synchronními výjimkami, to znamená
výjimkami, které vzniknou uvnitř programu. Všechny operace, které jsou jistým způsobem
nebezpečné a jejichž provádění by se nemuselo podařit, provádíme v hlídaném bloku (guarded
block), který se skládá s pokusného bloku (try block) a z jednoho nebo několika handlerů
(exception handler). V pokusném bloku se provádějí operace, které by mohly vyvolat výjimku.
Pokud ta nenastane, provedou se všechny příkazy pokusného bloku a část s handlery se přeskočí.
Pokud se však některá operace v pokusném bloku nepodaří, zakončí se provádění tohoto bloku a
řízení programu převezme některý z handlerů. Nebude-li handlerem program ukončen, pokračuje
za hlídaným blokem.
 Pro práci s výjimkami slouží tato klíčová slova: try, catch a throw. Klíčové slovo try
slouží jako prefix pokusného bloku, handlery uvádí klíčové slovo catch a throw představuje
operátor, který výjimku vyvolá.
Příklad: Vytvoříme třídu seznam, která bude obsahovat proměnnou udávající počet prvků. Pro
zjednodušení si vytvoříme pouze metodu, která zmenšuje počet prvků. Výjimka má nastat tehdy,
pokusíme-li se odebírat z prázdného seznamu.
#include <iostream.h>
#include <stdlib.h>

const int N=12; //schvalne je vetsi hodnota, aby se vyvolala vyjimka
class Vyjimka
{
 char *text;
 public:
 Vyjimka(char *t) :text(t){}
 char *DejText() const {return text;}
};

class Seznam
{
 int pocet;
 public:
 Seznam(int x) :pocet(x) {}
 int Odeber() throw (Vyjimka);
};

int Seznam::Odeber() throw (Vyjimka)
{
 if (pocet==0) throw Vyjimka("Seznam je prázdný");
 int p =pocet;
 pocet--;
 return p;
}

int main()
{
 Seznam s(10);

37

 clrscr();
 try //Pokusny blok
 {
 for (int i=0;i<N;i++)
 cout << s.Odeber();
 }
 catch(Vyjimka v)
 {
 cout << v.DejText();
 exit(1);
 }

 return 0;
}

38

7. Přetypování
 Kromě běžné operace (část) zavádí C++čtyři nové operátory k přetypovaní:
dynamic_cast - používá se pro bezpečné přetypování polymorfních tříd, k přetypování
mezi potomky a předky a jako jediný z těchto operátorů může využívat dynamické identifikace
typů.
static_cast - slouží k běžnému přetypování z předka na potomka nebo naopak bez
dynamické kontroly typů
reinterpret_část - umožňuje konverze jejichž výsledek může být závislý na implementaci,
cílovéplatformě nebo paměťovém modulu.
const_část - jako jediný z operátorů umožňuje vytvořit z nekonstanty konstantu a
naopak, popřípadě přidávat či odebírat modifikátor volatile.
Příklad použití:
class A{....};
class B:public A
{.....};

int main()
{
 A a;
 A *pa;
 B b;
 B *pb;

 pa=dynamic_část<A*>(pb);

}

 Text není dokončen!

39

Literatura
R. Pecinovský, M. Virius Objektové programováni I Grada, 1996
R. Pecinovský, M. Virius Objektové programováni II Grada, 1996
M. Virius Pasti a propasti jazyka C++ Grada, 1997
B. Stroustrup C++ Programovací jazyk BEN, 1997
S. Racek Objektově orientované programování v C++ KOPP, 1994
K. Nenadál, D. Václavíková Borland C++ Grada, 1992
G. Renner Borland C++ kompendium UNIS, 1992
A. Večerka Jazyk C++ UP Olomouc, 1996
I. Vondrák, P. Šaloun Objektově orientované programování VŠB-TU Ostrava, 1995
D. Kačmář Programování v jazyce C++ VŠB-TU Ostrava, 1995
M. Virius C++ pro nás ostatní, kurs v časopise Softwarové noviny, ročník 1996 a výš

