Programovaci jazyk C++

Mgr. Rostislav Fojtik
Ostrava, 1998

Obsah
L UIVOQ ottt 3
2. Zéklady objektove orientovaného programovani v jazyku CHt.......coeevieeiiieniieniienicecee e 4
2L THIAY ettt et b e eh ettt be et 4
2.2. DEAICNOSt = INNETILAINICEc..eeiiiiiiiiiieiie ettt ettt ettt e b et e b e eae 6
3. NOVE PIVKY JAZYKA Ct oottt ettt ettt be et e beenseeseenseeneas 8
3.1. ProudOVY VSTUP @ VYSTUD ...eeetiiiieiieiienteeieesttesttesieeteesttesteesiee et esteesaaesseesseesseessaesseesseessnesseens 9
3.2 FUNKCE ...ttt ettt st et ettt ettt ettt eaee 10
3. 2.1 NOVE PIVKY ettt ettt ettt et e et e enaesaeeestesnseenseenseenseenseenseenseenseenseenes 10
3.2.2. OAKAZY ...ttt et sttt et et ettt enaeenes 10
3.2.3. PTEtiZene€ fUNKCE ...c..eovuiiiiiiiiiiiie et e 11
3.2.4. FUNKCE MAIN ..ottt ettt ettt et st 11
3.3, PIACE SE SOUDOTY ...vviiiiieiiieeiiee ettt ettt ettt e s te e et e e s be e e teeesteeesbae e saeessaeesssaessseesnseeenseeenses 12
3.3.1. Otevieni @ UZaVieni SOUDOTU.........ccuiiiiiiiiriiirieiieiterte et 12
3.3.2. Formatovy a neformatovy VStUP @ VYSTUD co..veeeeerriiieiieerieeeieeeiee et 14
3.3.3. PHmMY prStUP K SOUDOTUveeeiiiieiiieiieeee ettt ettt e s 14
3.4. Dynamickd aloKace Pame@ti.........cccoueeiuiiiiieeiiieciieeee et 15
R I B 05755 ¢ 170 o 1 L) R PRT 15
3.4.2. OPETALOr AEIELE ..ottt ettt ettt ettt et 15
3.5 PIOtIZENY OPETALOTeeeveieeiiieeiie et ettt etteette ettt e e st e e sat e e st e e enbeeesseeenseeenseeenseeensseennseennes 16
4. Objektove orientované programovani v Jazyku CHt.......coeevieriienienieieienieseesice e 17
4.1, THAY @ INSTANCEeeeviieiieeiie ettt st e et e et e et esteesteeesbeeesseeessaeensaeessaeessseensseesssaesnsenans 17
4.1.1. KONSEIUKCE tHIAY ..veevvevieriieriieeiiesieeiiesee et ete et eeeeeete et e et e eneessaeesaeenseenseenseeseenseenseenseens 17
4.1.2. DALOVE PIVKY .nvtiiieeiiieiie ettt ettt ettt ettt ettt e bt et enbe e b e e st enstesseeseesseenseesseenseans 17
4.1.3. Standardni metody - konstruktor a destruktor.............ccooueriiiiiiniiniiiniieeee 17
4.1.4. Deklarace a definice MEtOdccveeiieiieiieieeieeie ettt sae e saeeeeens 18
4.1.5. Statické datoveé Cleny @ fUNKCEcoeeriiiieiiiiieeie et 23
AU1.60. PTALELE ...ttt b e ettt 24
4.1.7. KOMPOZICE ODJEKIT......uieieeiieiieiieiieiiestcerite st ee sttt e seaeeaeeeaeenaeeneeeaeensesnseenseens 25
4.2. DEAICNOSt = INNETITANCEeveiiieeeiiiiieeiie ettt ettt ettt et et et e bt e bt et e bt e s eesseeseenneas 26
4.3, POLYMOTTISINUS ...uvteeiiiieiieeeiee ettt et e et e et e et e et e e e essbeessseesnseesnsaesnseeenseesnseens 31
4.3.1. VItUAINT METOAY ...eeouiieeieiiieie ettt ettt e s e et e saeessaesenessaesnneeneens 31
4..3.2. Abstraktni a inStancni tHdYccveeeiiiiiienieeeiiecee e e 32
4.3. Vicenasobna dEAICNOSTcc.eeruiiiiiiieiieiieeteee ettt 33
5 SADIONY ..ottt 34
0. VY JIIMKY « ettt ettt ettt et e b e e bt e ae et e bt e nt et e e bt ent e be bt ent e beeaeententeeneeneennan 36
7 PIREYPOVANL.tiiiieceee et et et e sttt e st e e s e e s b e e et e e e nbeeenbeeeataeesaeeasaeeesteennbeennneennteens 38

LEETATUTA ..eeeeeeeeee ettt e e e e e e et e e e e e e e e e e e e e e e e e e eee et eeeeeeeeeeeeeseeesaaaessassseseesaaeeaeeeereeeeas 39

1. Uvod

Tyto ucebni texty slouzi pro studenty III. ro¢niku studijnich oborl se zaméfenim na
informatiku. U¢ivo navazuje na znalosti ze zimniho semestru o programovani v jazyku C.

Jazyk C++ je odvozen od jazyka C. Vnasi do jazyka nové moznosti, upravuje a rozsituje
nékteré prvky standardniho jazyka C. Jazyk C++ navrhl Bjarne Stroustrup z Bellovych laboratofi
AT&T. Ten pro svou praci na simulaci modelu pro distribuované systémy zjistil, ze se mu velmi
dobte hodi objektovy pfistup. Nejprve pouzil jazyk Simula, ktery se ptili§ neosvédcil, proto se
zamértil na navrh nového jazyka, ktery by nejen podporoval objektovy pfistup, ale byl i
dostatecné rychly. Jako zaklad pouzil existujici jazyk C. Novy jazyk nejprve dostal ndzev "C
with Classes" - C s tfidami. Pozdéji se prosadil nazev C++ ("naslednik C"). Standardizace jazyka
C++ neni doposud uzaviena.

K nejznaméjsim prekladactim C/C++ patii pfekladace firem Borland (Borland C/C++
5.0), Microsoft (Visual C/C++ 2.0), Watcom C/C++ 11, Zortech, IBM ...

2. Zaklady objektové orientovaného programovani v jazyku C++

Programovaci jazyk C vychazi z koncepce, kterd rozdéluje program na data a
algoritmické struktury (reprezentované napt. funkcemi). Ob¢ skupiny mohou byt zpracovavany
teoreticky nezavisle na sob¢ (algoritmy musi byt pouze vhodné pro vstup, zpracovani a vystup
urcitych dat).

Jazyk C++ mulze vyuzivat vétSiny postupt jazyka C, ale navic principt objektové
orientovaného programovani, které vnimaji data i prislusné algoritmy jako jeden celek. Data a
algoritmy jsou sdruzeny v objektech. S daty se v objektech manipuluje pomoci metod (v jazyku
C++ se metody &asto oznaduji clenskymi funkcemi), které jsou sou¢asti daného objektu. Casto se
hovoti o tom, Ze “objekty si posilaji zpravy”. Toto posilani zprav objektu je realizovano jako
vyvolani nékteré z jeho metod.

Obecné vlastnosti charakterizujici OOP:
1. Zapouzdieni (Encapsulation)

Spojeni prvkil dat s metodami, které maji pracovat s daty.
2. Dédicnost (Inheritance)

Moznost odvozovat nové tridy, které¢ dédi data a metody z jedné nebo vice tiid. V
odvozenych tfidach je mozno ptidavat nebo predefinovavat nova data a metody.
3. Polymorfismus

Cesky mozno vyjadfit piiblizné pojmem "vicetvarost". Umoziuje jedinym piikazem
zpracovavat "podobné" objekty.

Tyto vlastnosti umoznuji vytvaret 1épe strukturovany a udrzovatelny program.

2.1. Tridy
Srovnani klicovych pojmt rozdilnych jazyce C a C++:
uzivatelem definovany datovy typ tfida

promeénna objekt (instance tfidy)
funkce metoda (Clenska funkce)
volani funkce zprava, udalost

Zakladem OOP je trida (class). Typ tiida se podoba struktufe v jazyce C. Muze vSak
navic obsahovat i funkce nazyvané metodami - princip zapouzdreni. Zapouzdieni kromé spojeni
¢lenskych dat a ¢lenskych funkci umoziiuje jasné odlisit vlastnosti dané tiidy, které mohou byt
pouzivany i mimo definici tfidy od ryst, které Ize vyuzivat jen uvnitt tiidy - rozliseni

pristupovych prav.

Priklad deklarace:

class rozpocet{// deklarace t¥idy, neni nutné pouZivat typedef
private: // seznam soukromych ¢lenu
int hotovost; // soukromy ¢len ttridy - data
public: // seznam vetrejnych ¢lenu t¥idy
int plat(int velikost);// metoda, neboli ¢lenskd funkce
int najemne (int n); // deklarace metody

int pujcky(int p); // deklarace metody
bi

Pojem objekt budeme chapat jako konkrétni vyskyt, instanci dané tfidy.Viz nésledujici

deklarace:
rozpocet me penize; // rozpocet je t¥ida, me penize
// predstavuje objekt

Srovnani struktur v C, struktur a tfid v C++:

struktura v C struktura v C++ tfida v C++
typedef struct{ struct hodnota({ class hodnota({
int a; int a; public:
float b; float b; int a;
}thodnota; }s float b; };

Rozdil mezi strukturami v C a tfidami v C++ je v trovni piistupu ke ¢leniim. Ten se urcuje
pomoci public:, privat: a protected: (vefejné, soukromé a chranéné ¢leny).

Veftejné ¢leny - na né se mizeme obracet vSude, kde je objekt zndm prostiednictvim
libovolného jiného ¢lena tridy, ale i prostfednictvim libovolné jiné funkce nebo vyrazu.

Soukromé ¢leny - obracet se na n¢ miizeme pouze prostiednictvim ¢lenti téze tiidy nebo
pomoci zvlastnich funkci, kterym se tika spratelené metody.

Chranéné Cleny - obracet se na n¢ miizeme pouze prosttednictvim ¢lent té tfidy, ve které
byly chranéné ¢leny definované, nebo pomoci ¢lent jakékoli tfidy z dané tfidy odvozené.

Konstruktor ma za kol inicializaci ¢lenskych dat. jedna se o specialni funkci, ktera je
automaticky volana pfi vytvoreni objektu. Konstruktor musi mit stejné jméno jako tiida. Tato
specialni funkce nema zadny navratovy typ ani void (nemuize tudiz obsahovat piikaz return).

Pokud programator nevytvoii ani jeden sviij konstruktor, pak je vytvoien implicitni
konstruktor, ktery vSak neinicializuje zadna ¢lenska data.

Destruktor je opakem konstruktoru. Nelze vSak pretizit a nema zadné parametry.

Priklad
Priklad vypisu textu na obrazovku pomoci projektu a objektove orientovaného ptistupu:

//*** Priklad — NAPIS.H ***//
/* soubor - NAPIS.H */
/* hlavickovy soubor obsahujici deklarace ttridy */
class Napis{
private:
char text[100];
public:
Napis (char pl[]); // prvni konstruktor - deklarace
Napis () ; // druhy konstruktor - deklarace
void vypis(); // deklarace dal3i metody
}i
/*** NAPIS.H *xx /[

/* soubor - NAPIS.CPP */
#include <iostream.h>
#include <string.h>
#include "napis.h"

//definice metod
Napis::Napis(char pl[1])
{

strcpy (text,p);
}

Napis: :Napis ()
{
strcpy (text, "Konstruktor bez parametru");

}

void Napis::vypis /()
{

cout << text << endl;

}
Vi NAPIS.CPP ***/

/* soubor - HLAVNI.CPP */
#include "napis.h"

// definice globalni instance
Napis prvni ("Prvni vypis");
Napis druhy ("Druhy vypis");
Napis treti ("Treti vypis");
Napis ctvrty;

int main ()

{
prvni.vypis () ;
druhy.vypis () ;
treti.vypis();
ctvrty.vypis();
return 0;

}

/*** HLAVNI.CPP *xk /

//*** Konec prikladu ***//

2.2. Dédi¢nost - inheritance
Inheritance umoznuje piidat k zédkladni (rodicovské nebo bazové) tiidé T1 dalsi vlastnosti
nebo stavajici vlastnosti modifikovat a vytvofit novou odvozenou (podtiidu neboli potomka)
tiidu T2. Programovaci jazyk C++ umoziuje vytvaiet inheritanci nasledujicich typt:

Jednoducha inheritance - tfida ma jen jednoho ptedka (rodice). Vytvaiime stromovou
hierarchii tfid. Ttidu v nejvyssi urovni oznacujeme jako kotfenovou tiidu.

Vicenasobna inheritance - tfida ma vice predki.

Opakovana inheritance - ttida mtze zdédit vlastnosti nékterého (vzdalenéjsiho) piedka vice

cestami. Vztahy tfid v hierarchii jsou znazornovany orientovanym acyklickym grafem (direct
acyclic graph - DAG), oznacovanym také jako graf pribuznosti trid.

class T1{
private: //soukromé datové prvky
public: //vefejné pristupné metody
}
class T2: public T1l{ //t¥ida T2 je potomkem t¥ridy T1
private: //soukromé datové prvky
public: //ve¥fejné pristupné metody

}

3. Nové prvky jazyka C++

Jazyk C++ obsahuje oproti jazyku C dalsi klicova slova:
class delete friend inline new operator
private protected public template this virtual

V jazyce C se pro ukazatele, které nemaji nikam ukazovat pouziva makro NULL, ktera
mé obvykle hodnoty 0, OL nebo (void*)0. V C++ je mozné tohoto makra rovnéZz pouzit. Existuji
vSak situace, kde NULL muze ptsobit problémy, proto se doporucuje pouzivat radéji 0.

V novéjsich prekladacich jazyka C++ (napt. Borland C++ 5.0) se objevuje novy datovy
typ bool, ktery se fadi mezi celoc¢iselné typy a ktery miize nabyvat hodnot false (0) a true (1).

Programovaci jazyk C++ podporuje komentaie jazyka C a navic vytvaii novy typ.
// v8e od dvou lomitek aZ do konce radku je brano jako komentadt

Jazyk C++ zavadi tzv. reference, které predstavuji zvlastni druh proménné. Na reference
se mizeme divat jako na jina jména existujicich proménnych. Deklaruji se podobné jako
ukazatele, jen misto znaku “*” vkladame znak “&”. Jakmile vSak referenci deklarujeme, bude jiz
stale ukazovat na tutéz proménnou. V C++ rovnéz nemtizeme deklarovat ukazatele na reference a
pole referenci. Nelze také deklarovat reference na typ void (void&). Reference se nejcastéji
pouzivaji pti volani funkci k pfedavani parametrti odkazem.

int prom;

int &ref prom; //reference
int *uk prom; //ukazatel
ref prom = 20; //je to samé jako: prom=20;

uk prom = &ref prom;//je to samé jako: uk prom=&prom;

Konstanty se deklaruji nasledujicim zptisobem:
const float pi = 3.14159; //nebo float const pi = 3.14159;

Konstantu nelze ménit a tudiZ je ji nutné inicializovat na urcitou hodnotu. Nase konstanta pi
predstavuje hodnotu typu float, ale nejedna se o 1-hodnotu, to znamena, ze nemtize stat na levé

strané pfifazovaciho vyrazu.
pi = 3.14; //Nelze!!!
V jazyku C++ je mozné napsat:
const int M = 500;
double pole[M]; //podobny zapis v jazyku C nebyl mozZny

Pouziti konstant je vhodnéjsi nez pouzivani maker jako v jazyce C. Je vhodné se vyhnout
Castému pouzivani maker, které se naopak v jazyce C pouzivala ve velké mife.

Pomoci rozlisSovaciho operatoru “::” (¢tyfteCka) mizeme volat jinak zastinéné globalni
proménné. Piiklad:

int 1=10; //globdlni promé&nnéa
void fce()
{
int i=20; //1lok&lni proménné

cout << i << endl << ::i <<endl; // nejprve se vypide
//hodnota lokdlni a na druhy tradek globadlni proménné }

Struktury (struct) a unie (union) patii mezi objektové typy (polozky mohou byt datové
typy 1 metody). Struktura mé vSechny své prvky implicitn€ public a pfistupova prava lze
selektivné zménit. Unie maji pfistupova prava implicitné rovnéz public, ale neni je mozné
zménit. V C++ mohou unie také pfedstavovat objektové typy, ale s omezenimi: nemohou mit
predky ani potomky, jejich prvky nesmi byt instance objektového typu s konstruktorem,
destruktorem nebo pfetizenym operatorem “=". Samotné unie své konstruktory mit mohou.

3.1. Proudovy vstup a vystup

C++ ma nové moznosti usnadiujici vstup a vystup. Standardni vystupni proud cout
nahrazuje stdout a vstupni proud cin, ktery nahrazuje stdin . Pro chybova hlaSeni se pouziva
vystupni proud cerr. Proudy a zdroj nebo cil jsou spojeny s pietizenymi operatory << (operator
insertion, pro vystup do proudu) a >> (operator extration, pro vstup z proudu).

Vsechny vstupni a vystupni operatory a manipulatory jsou definovany v externi run-time
knihovné, a proto je potieba provést vlozeni hlavickového souboru iostream.h.

Priklad:
#include <iostrem.h>
//deklaruje zdkladni rutiny pro zpracovani proudu

void main (void)

{

int i;

cout << "Zadej c¢&islo: "™ // wvystupni proud

cin >> i; // vstupni proud
cout << "Cislo je: " << i;

}
cout - vystupni proud, ktery zasila znaky na standardni vystup stdout pomoci operatoru <<
cin - vstupni proud pfipojeny na standardni vstup pomoci operatoru >>, umi zpracovavat vSechny
standardni typy dat
iostream.h - standardni hlavickovy soubor, ktery nahrazuje fadu funkci ze stdio.h

Formatovani se provadi pomoci manipulatori. Jedna se specidlni operatory podobné
funkcim. Tyto operatory pouzivaji jako sviij argument odkaz na proud, ktery také vraceji. Proto
mohou byt souc¢asti piikazu vystupu. Manipulatory jsou definovany v hlavickové souboru
iostream . h.

manipulitor Zapis ¢innost

dec outs << dec nastavi vlajku desitkové konverze
ins >> dec

hex outs << hex nastavi vlajku Sestnactkové konverze
ins >> hex

oct outs << oct nastavi vlajku osmi¢kové konverze
ins >> oct

WS ins >> ws odstraiiuje bilé znaky

endl outs << endl vlozi konec fadku a vyprazdni bufer

ends outs << ends prida k fetézci ukoncovaci nulu

flush outs << flush vyprazdni bufer vystupniho proudu

setbase(int) outs << setbase(n) nastavi Ciselnou bazi na n (0,8,10,16)

0 predstavuje desitkovy zéklad

10

resetiosflags(long) |ins >> resetiosflags(l) | zrusi specifikované formatovaci bity
outs << resetiosflags(l)

setiosflags(long) |ins >> setiosflags(l) nastavi specifikované formatovaci bity
outs << setiosflags(l)
setfill(int) ins >> setfill(n) nastavi znak vypln¢€ na n

outs << setfill(n)

setprecision(int) ins >> setprecision(n) |[nastavi fp pfesnost na n Cislic
outs << setprecision(n)

setw(int) ins >> setw(n) nastavi Sitku vystupu na n pozic
outs << setw(n)

Priklad:
int cislo = 200;
cout.fill($);
cout.width (4);
cout << cislo; //zobrazi se $200.

3.2. Funkce

3.2.1. Nové prvky

Funk¢ni prototypy v C++ mohou mit nastaveny implicitni hodnoty nékterych parametra.
Pokud se pfi volani dané funkce odpovidajici argument vynechd, bude za n¢j dosazena implicitni

hodnota.
int Funkce (float f=6.1, int 1 =10);

[/ e

Funkce (3.14, 25); // oba implicitni parametry budou prepsany
Funkce (2.5); // stejné jako volani Funkce(2.5,10);
Funkce (); // stejné jako volani Funkce(6.1,10);

Pozor! Vynecha-li se prvni parametr, musi se vynechat i vSechny nasledujici.

Programovaci jazyk C++ zavadi nové klicové slovo inline, které zpiisobi zkopirovani
funkce na kazdé misto v kodu, kde je dana funkce volana. Funkce se bude chovat podobné¢ jako
by byla makrem. Na rozdil od maker v§ak umoznuje typovou kontrolu.

3.2.2. Odkazy

V jazyce C jsou dvé moznosti, jak preddvat parametry funkcim:

1. Volani hodnotou - ptredava se samotna proménna a funkce si vytvari vlastni lokalni kopii na
zasobniku. Takovy zptisob neni vhodny pro svou ¢asovou a pamét'ovou narocnost u parametrti
s vétSim datovym typem.

2. Jazyk C neumi ptfedavat parametry odkazem, ale umoziuje piedani adresy, které je pro veétsi
datové struktury vyhodnéjsi nez prvni zplsob.

V jazyce C++, kromé vySe uvedenych variant, jiz existuje moznost predavani parametru

odkazem - radé€ji funkce s parametry volanymi referenci..

Piiklad:

void swap(int &a, int &b)

11

int pom;

pom=a;
a=b;
b=pom;
}

void main (void)
{
int X=10, Y=20;

swap (X, Y); // vyméni se hodnoty prom&nnych X a Y
cout << "X je: " << X <" Y je:” << Y << endl ;
}

Funkce mohou odkazem vracet vypocteny vysledek (funkce vraci referenci). Takovymto

funkcim se tika referencni. V ptikazu return musi byt uvedena l-hodnota vracen¢ho typu.
Priklad:
int pole[20];
int gl;
int &fce(int 1i)
{
if ((i<0) || (i>19)) return gl;
else return pole[il];

}

/e
x = fce(3); // stejné jako: x = c[3];
fce (10) = 150; // stejné jako: x[10] =150;

3.2.3. Pretizené funkce
Diky moznosti pietéZzovat funkce je program ¢itelngj$i. Chceme-li napsat dve rtizné
funkce s dvéma riiznymi argumenty, mohou mit ob¢ funkce stejny nazev rizné argumenty.
Priklad ¢tyt funkei se stejnym jménem, ale riznym ndvratovym typem nebo rliznymi parametry.

void fce(); // funkce &.1
int fce (int); // funkce &.2
float fce(flaot); // funkce &.3

int fce(float, double); // funkce &.4
Zavolame-li v programu funkci fce(100);, pteklada¢ vyvola funkci ¢.2. Je vSak potieba davat

pozor na jednoznacnost zapisu. Piiklad vyuziti:
int abs (int n)
{
return (n < 0) ? n*(-1) :n;
}
double abs (double n)

{
return (n < 0) ? n*(-1):n;
}
V ptipad¢, ze by moznost pietézovat funkce neslo, museli bychom napsat rizné funkce pro riizné

datové typy. Naptiklad funkce int abs _i(int n); a double abs_d(double n); a podobné.

3.2.4. Funkce main

Jazyk C++ klade na funkci main vice omezeni nez jazyk C: funkce main() musi byt typu
int nebo void, nelze ji rekurzivng volat, nesmime ziskévat a pouzivat jeji adresu, funkce mtize

12

mit az dva parametry ptesn¢ uréenych typu (int maim(int argc, char *argv/[])), musi se pouzit
volaci konvence jazyka C (explicitné uvést identifikator cdecl).

Priklady

1. Vytvoite pretizené funkce typ mabs(typ n),, které budou vracet absolutni hodnotu ¢isel typu
int, double, long.

2. Vytvoite pretizené funkce void Tisk(typ prom),, které budou vypisovat na obrazovku
proménnou typu int, double, char, char *.

3. Vytvoite funkci int Suma(int dolni=1, int horni=>50,int krok=1), , ktera bude vracet soucet
celych ¢isel od dolni hranice do horni, krok udéava vzdalenost mezi sousednimi ¢isly. Volejte
funkci s rizné nastavenymi parametry.

3.3. Prace se soubory

Forméatovany vstup a vystup je prakticky shodny i pfi praci se soubory. Rozdil je
v hlavickovém souboru, ktery musime k programu piipojit a také v oznaceni tiid, pomoci kterych
se pristup k souboru realizuje. Jsou to ofstream pro vystup a ifstream pro vstup. Implicitné prace
se vstupnim nebo vystupnim proudem probihd v textovém rezimu.

Hierarchie tfid vztahujici se k datovym tokiim pro soubory:

108

| 1stream ostream

|
| iostream |

|ifstream | | ofstream |

fstream

3.3.1. Otevreni a uzavreni souboru

Otevieni souboru je mozné dvéma zpusoby: pifi vzniku objektu (u konstruktoru je
uvedena cesta k souboru) a nebo pomoci ¢lenské funkce open (v tomto piipadé je volan
implicitni konstruktor bez parametrii). Uzavieni souboru se obdobné provadi dvéma zpusoby:
automaticky destruktorem pfi zaniku objektu nebo ¢lenskou funkci close.

Otevieni pomoci konstruktoru

ifstream(const char *name, int mode = ios::in, int = filebuf::openprot);

ofstream(const char *name, int mode = ios::out, int prot = filebuf::openprot),

fstream(const char *name, int mode = ios::in, int prot = filebuf::openprot);

Prvni parametr je cesta k souboru, druhy parametr jsou atributy otevieni souboru (viz. tabulka),
treti parametr je pro sdileni souboru.

13

ReZim popis ¢innosti

10s::app pripojuje data na konec souboru

10s::ate nastavi se na konec souboru

10s::in pfi otevieni nastavi rezim Cteni (implicitni pro ifstream)

ios::out pfi otevieni nastavi rezim zapis (implicitni pro ofstream)

10s::binary otevie soubor v bindrnim rezimu

10s::trunc pokud soubor existuje, zrusi jeho obsah (implicitni je-li i0s::out a neni bud’
10s::ate nebo i0s::app)

10s::nocreate otevieni se neprovede, pokud soubor neexistuje

ios::noreplace existuje-li soubor, zhavaruje otevieni pro vystup, neni-li nastaveno ios::app
nebo ios::ate

Mozné parametry pro sdileni:

filebuf::sh_compact - stejné jako implicitni hodnota filebuf::openprot, soubor lze sdilet,
pokud to povoli operacni systém

filebuf::sh_none - soubor nelze sdilet

filebuf::sh_read - soubor lze sdilet jen pii Cteni

/*************** pfiklad ****************/

#include <fstream.h>

void main (void)
{

ofstram of (“soubor.dat”,ios::out, ios::binary);

if (of !'= 0)
{
float f;
for (int i = 0; 1<50, 1i++)
{
f=i*i;
of .write ((const char *)&f, sizeof (f));//neformdtovany zapis

}

of.close();
}
}

/***************** konec *******************/

Otevieni pomoci ¢lenské funkce

Funkce open ma stejné parametry jako konstruktor.
Deklarace ve tiid¢ ifstream:

void open(const char *name, int mode,int prot=filebuf::openprot),
Deklarace ve tiid¢ ofstream:

void open(const char *name, int mode,int prot=filebuf::openprot),
Deklarace ve tiid¢ fstream:

void open(const char *name, int mode,int prot=filebuf::openprot),
Uzavieni souboru se provede ¢lenskou funkci close, kterd nema zadné parametry.

void close();

14

/*************** pfiklad ****************/

#include <fstream.h>

void main (void)

{
int hod=123;
ofstream os;

os.open ("POKUS.DDD", ios::out); //otevteni pro zapis
0s << hod;
os.close();

hod=0;

ifstream is;

is.open ("POKUS.DDD", ios::in); //otevteni pro &teni
is >> hod;

cout << hod << endl;

is.close();

}

/***************** konec *******************/

3.3.2. Formatovy a neformatovy vstup a vystup

Pti formatovém zapisu do souboru se pouziva piretizeny operator << a pro ¢teni >>.
Operatory se pouzivaji stejnym zpusobem jako pro standardni zatizeni.

Pro neformatovy zapis a Cteni se pouzivaji funkce:

ostream &write(const signed char *, int n);

ostream &write(const unsigned char *, int n);

istream &read(signed char *, int n);

istream &read(unsigned char *, int n);
Prvni parametr je adresa pole obsahujici zapisovana data, (pole, do které¢ho se ulozi prectena
data). Druhy parametr je pocet zapisovanych (¢tenych) bytu.
Pro neformatovy zapis jednoho znaku se pouziva funkce put.

ostream put(char),
Funkce get slouzi pro neformatové ¢teni fetézce a také jednoho znaku.

istream& get(char?®, int len, char = "\n');

istream& get(signed char¥, int len, char = "\n');

istream& get(unsigned char¥, int len, char = "\n')

istream& get(char&),

istream& get(signed char&),;

istream& get(unsigned char&);

3.3.3. Pfimy pfistup k souboru
Pro zjisténi pozice vstupu (Cteni) je funkce tellg a pro zjisténi pozice vystupu (zépisu) je
funkce tellp.

long tellg(),
long tellp(),

15

Pro nastaveni pozice pro vstup (Cteni) slouzi funkce seekg a pro nastaveni pozice pro
vystup (zapis) je funkce seekp.

ipstream& seekg(streampos pos);

ipstream& seekg(streamoff off, ios::seek_dir);

opstream& seekp(streampos pos),

opstream& seekp(streamoff off,ios::seek dir),
Prvni parametr udava pozici, druhy miize nabyvat hodnot, které jsou definované v tiid¢ ios:

beg - hodnota prvniho parametru je vztazena k pocatku souboru
cur - hodnota prvniho parametru je vztazena vzhledem k aktualni pozici v souboru
end - hodnota prvniho parametru je vztazena ke konci souboru

3.4. Dynamicka alokace paméti

Jazyk C++ nabizi nové operatory pro alokaci a uvolnéni paméti a to operator new a
delete. Je sice dale mozné pouzivat funkci jazyka C (malloc, free ...), ale neni to moc vhodné,
nebot’ tyto funkce nevi krome potiebné velkosti nic o dané proménné. Naproti tomu operator new
zna tiidu objektu, automaticky vola jeji konstruktor a také vraci ptislusny typ ukazatele (neni
tieba pretypovavat, béhem pfifazeni probiha typova kontrola).

Dealokace paméti, kterd byla alokovana operatorem new, se musi provést pomoci
operatoru delete. Tento operator automaticky vola destruktor tfidy.

3.4.1. Operator new

Za klicové slovo new piSeme oznaceni typu proménné, kterou chceme alokovat. Operator
vybere z volné paméti potiebné misto a vrati ukazatel na n€. Pokud se operace nepodaii vrati
hodnotu 0, coz nepiedstavuje platnou adresu.

P¥iklad:

long double *prom;

prom = new long double;

if (!prom) Chybal();

//jestliZe se alokace nezda¥ila, volame funkci Chyba()

Chceme-li dynamickou proménnou pii alokaci inicializovat na ur¢itou hodnotu, zapiSeme tuto
hodnotu do zavorek za jméno typu:

long double *prom;

prom = new long double (55.66);

if (!'prom) Chyba();

Pti alokaci pole napiSeme k datovému typu do hranatych zavorek pocet prvki pole. V tomto
ptipad¢€ vSak nelze pouzit inicializaci prvku. Jejich hodnoty musime nastavit dodatecné.

int *pole;

pole = new int[100];

Operator new miize alokovat rovnéz vicerozmérna pole. Je potieba si vSak uvédomit, Ze jazyk
C++ znd pouze pole jednorozmérna a vicerozmérna pole nahrazuje poli jednorozmérnymi, jehoz

prvky jsou opét pole.
int matice[10][20];
matice = new int[10][20];

3.4.2. Operator delete

Operator delete je unarni a jeho jedinym operandem je ukazatel na proménnou, kterou
chceme uvolnit.

16

delete prom,
Pozor! Operator delete proménnou z paméti sice uvolni, ale ptislusny ukazatel bude stale
ukazovat do stejného mista v paméti, kde se dynamicka proménna nachazela. Doporucuje se po
dealokaci ptitadit ptislusnému ukazateli hodnotu 0. Dealokace paméti se smi provést pouze
jedenkrat, jinak mtize dojit nekontrolovatelnému chovani programu. Ukazatel s hodnotou 0 1ze
vsak dealokovat bezpecné bez vedlejsich efekti.

Pti uvolnovani dynamicky alokovaného pole se hranaté zavorky pisi za operator delete.
delete [] pole;

3.5 Pretizeny operator

Dalsim rozsifenim jazyka je moznost ptetizit nejen funkce, ale i operatory. To znamena
urcit jim ¢innost v zavislosti na kontextu. Toto je mozné, nebot’ operator je v C++ chapan jako
funkce s jednim parametrem (unarni operator) nebo se dvéma parametry (binarni operator). Pti
definici pak jméno rozsifujeme o klicové slovo operator @, kde znak (@ nahrazuje pretizeny
operator. Pozor, nelze vSak ptetizit naptiklad operatory ?:, .*, ::, sizeof a . (pfistup ke
strukturam). U pfetizeni operdtoru ++ a — nelze urcit zda se jedna o postfixovy nebo prefixovy
pristup.

Priklad:
#include <iostrem.h>
struct complex

{

double re,im;

}s

//definice pretiZeného operatoru
complex operator+ (complex a, complex Db)
{

complex pom;

pom.re=a.re+b.re;
pom.im=a.im+b.im;
return pom;

}

//ptetypovani vystupniho operatoru

ostream &operator<<(ostream &vys, complex x)
{

vys << x.re << W 4+ i.” << x.im;

}
int main ()
{
complex VYS,X(1.0,2.0),Y(3.0,4.0);

VYS=X+Y;
cout << VYS << endl;

return O;

17

4. Objektové orientované programovani v jazyku C++
4.1. Tridy a instance

4.1.1. Konstrukce tfidy

Jak jiz bylo uvedeno v kapitole o zakladech objektove orientované¢ho programovani,
zavadi jazyk C++ novy typ a to je tfida (class). Tiida je uzivatelsky definovany typ a obsahuje
jak clenska data, tak i ¢lenské funkce. Pro deklaraci tfidy je mozné vyuzit klicova slova class,
struct i union. Struktura ma vSechny své prvky implicitn¢ public a pfistupova prava lze
selektivné zménit. Unie maji ptistupova prava implicitn€ rovnéz public, ale neni je mozné
zmeénit. Ttida vytvotena pomoci slova class ma implicitné hodnotu ptistupového atributu privat
a je ji mozné selektivné zmenit.

public: povoluje vnéjsi pistup k prvkam tfidy
private: zakazuje vnéjsi pristup k prvkiim tiidy

protected: oznacuji se takto prvky nepfistupné vzdalenym piistupem z vnéjsku tiidy,
ale prochézejici dédénim do odvozenych ttid.
Nastaveni ptistupovych prav lze v deklaraci provést vicekrat a v rizném poradi.

4.1.2. Datové prvky

Kromé jednoduchych datovych typti a poli prvkii jednoduchych typli mohou byt ve tiide
deklarovany také prvky s typem jiné tfidy. Pfi deklaraci prvka je potfeba dbat na néktera
omezeni:

B prvky nesmi byt konstantni (napft. const float pi; - chyba!). Je-li potieba ve tfidé pouZzivat
symbolicky oznacené konstantni prvky, pak se zavedou jako statické konstantni datové prvky
a tim jsou spolecné pro vSechny objekty ttidy. (v deklaraci tfidy se uvede static const float pi;
a v implementacnim textu tiidy pak static const float pi=3.14;).

B prvky nesmi byt pfimo inicializovany na ur¢itou hodnotu (napt. int pr=15, - chyba!). Tato
chyba je pochopitelna, kdyz si uvédomime, Ze se jedna o deklaraci, pti niz se prvku jeste
nepfid€luje pamét’! Inicializace se provadi az prostfednictvim konstruktoru (s vyjimkou
statickych prvki).

B na rozdil od metod (Clenskych funkci) nesmime prvky pretizit, tedy rtizné datové prvky nesmi
mit stejna jména.

Datové prvky by mély mit pristupovy atribut private a piistup k nim by mély zajistovat pouze

k tomu ucelu zavedené metody.

4.1.3. Standardni metody - konstruktor a destruktor

Jak jiz bylo diive uvedeno konstruktor je standardni metoda kazdé tiidy, ktera se stard o
vytvofeni objektu. Konstruktor nic nevraci a nesmi byt typovan ani jako void. Pi vytvareni
vlastni tfidy mame nasledujici moznosti:

B Nedefinujeme zadny konstruktor. V tom piipad¢ si ho kompilator vytvoti sam (tzv. implicitni
konstruktor). V implicitnim konstruktoru je volan konstruktor bez parametrt bazové tiidy a
konstruktory bez parametrt pro vytvotreni vnotenych objektii. V piipadé, ze takové
konstruktory neexistuji, pieklada¢ indikuje chybu.

18

B Definujeme jeden konstruktor. Ten mtze mit stejné jako kazda jind metoda parametry véetné
jejich inicializace. Jakmile je n&jaky konstruktor definovan, nevytvofii se implicitni
konstruktor.

B Pietizime konstruktor (definujeme vice konstruktoru). Tato varianta umoznuje rizné zpisoby
inicializace objektu.

B Je mozné také vytvotit tzv. kopirovaci (copy) konstruktor, ktery dokéze inicializovat objekt
podle vzoru realizovaného jinym, jiz existujicim objektem téze tridy.

Priklad: kopirovaci konstruktor
class A
{
private:
int i;
public:
A(int j) {i=73;:;}
A (A &vzor) {i=vzor.i;}

}

int main ()

{
A prvni (10);
A druhy(prvni); //copy konstruktor
A treti=prvni; //copy konstruktor

Destruktor je rovnéz standardni metoda kazdé tiidy, ktera provadi ¢innost souvisejici
s ruSenim objektu. Neni-li ve tfid¢ destruktor explicitné definovan, kompilator vytvoii implicitni
destruktor. Explicitni destruktor se jmenuje stejné jako ttida a pied jeji jméno se vlozi “~”, nesmi
mit zadné parametry, nic nevraci, nesmi byt pretizen, musi byt deklarovan jako public. Piekladac
vola destruktor automaticky v okamziku zaniku odpovidajici proménné (napf. pii opusténi
ptislusného bloku, dané funkce nebo pti ukonceni programu). Destruktory se volaji v obraceném
potadi nez konstruktory.
Priklad zapisu:

class NejakaTrida

{

private:
int a; //&lenskd data
int b; //&lenska data
public:
NejakaTrida(); // konstruktor bez parametru

NejakaTrida (int X, int Y);

// konstruktor s parametry
~NejakaTrida(); // destruktor
int Vetsi (int X, int Y);

// deklarace né&jaké dal3i metody

}

4 .1.4. Deklarace a definice metod

Zatim jsme si ukazovali hlavné jakym zptsobem se jednotlivé metody deklaruji uvnitt
tiidy. Metody je vSak potieba také definovat.

19

Pti definici jednotlivych metod nesmime zapomenout, Ze identifikator metody musi byt
spojen s identifikatorem tiidy. Oba identifikatory od sebe odd€lujeme “::” (CtyfteCkou). Definice
metody se pak provadi az za deklaraci tfidy.

V kazdé metod¢ je jeSté jeden skryty parametr - ukazatel na instanci, pro niz se dana
metoda volala. Lze se na n¢j odvolat klicovym slovem this. Ptekladac jej pouziva k tomu, aby
urcil, s jakou instanci (objektem) pracuje.

Jazyk C++ umoziiuje definovat télo metody uvnitt deklarace tidy. Takto definované
metody se prekladaji jako vlozené (inline). Pokud chceme vytvoftit inline metody a nechceme ji
definovat uvniti deklarace tfidy, ptipojime v definici metody kli¢ové slovo inline.

Kromé konstruktort a destruktoru miizeme ostatni metody rozd¢lit na dvé zakladni
skupiny:

- zménové - metody, jejichz ucelem je n¢jakym zpiisobem zmenit objekt.

- pristupové - metody, které ptedavaji hodnoty soukromych polozek. Klicové slovo const
na konci deklarace naznacuje, ze dana metoda ponechava objekt beze zmén.

V deklaraci tfidy je mozné zatradit prvky, které predstavuji deklaraci typi (napt. pomoci
konstrukei struct, union, enum, class a typedef). Plati vSak jisté podminky:
- typ struct a union je vn¢ tfidy pouzitelny bez ohledu na pfistupovy atribut (na rozdil od typa
enum, typedef a class, které¢ musi byt deklarovany zasadn¢ jako public, maji-li pfistupny i vn¢
tiidy).
Piiklad:

// zacé&tek deklarace tridy

class Cas

{

private:
int sek, min, hod;
public:
Cas (int h, int m, int s) {sek=s;min=m;hod=h};

//konstruktor - inline
void Zmenit (int h,int m,int s) {sek=s;min=m;hod=h};
//inline zmé&nova metoda
void NastavHod (int hod); // deklarace zménové metody
void NastavMin (int min); // deklarace zménové metody
void NastavSek (int sek); // deklarace zménové metody
void Tisk () const; //ptistupova metoda
int DejHod()const; //pfistupovad metoda
int DejMin()const; //pfistupova metoda
int DejSek()const; //pfistupovad metoda
~Cas(){ }; // destruktor - inline
}i
// konec deklarace tridy

/***x* definice metod *****/
void Cas::Tisk()const

{

cout << hod << ':’/ << min << ‘:’ << sek << endl;

}

int Cas::DejHod () const

{
return hod; //hod oznacuje this->hod
}

int Cas::DejMin () const

{

20

return min; //min oznacuje this->min

}

int Cas::DejSek()const

{

return sek; //sek oznacuje this->sek

}

vold Cas::NastavHod (int hod)
{

this->hod=hod; //nutné pouziti parametru this

}

void Cas::NastavMin (int min)

{

this->min=min; //nutné pouZiti parametru this

}

vold Cas::NastavSek (int sek)

{

this->sek=sek; //nutné pouziti parametru this

}

/*** konec definic ***/

void main (void)

{
Cas AktualniCas(13,47,55); //vytvofeni instance t¥idy Cas

AktualniCas.Tisk(); //vypis hodnot
AktualniCas.NastavSek (0) ;
// ... dal8i metody
AktualniCas.Zmenit (14,15,16);
//... dal3i metody
}

Pti blizsi prohlidce programu jste si asi v§imli, Ze konstruktor Cas(int h,int m,int s); a
metoda void Zmenit(int h,int m,int s); dé€laji vlastn€ stejnou Cinnost a jednu z metod by bylo
mozné vynechat. Neni to v§ak vhodné, nebot’ konstruktor je ptekladacem automaticky volan ve
chvilich, v nichz to povazuje za dulezité. Obycejna metoda ke stejnému postupu prekladac nikdy
nepfiméje. Konstruktor tedy neni obycejnou metodou zastupitelny. V piipad€, Ze bychom se
snazili vyuzivat jen konstruktor, bychom opét narazili na problém v okamziku, kdy bychom
chtéli jiz diive vytvorené instanci zménit hodnoty. Konstruktor totiz vzdy vytvaii novou instanci.

Vsechny metody samoziejmé nemusi byt pouze public, ale v jistych pfipadech je vhodné,
aby byly soukromé pro danou tfidu. Pak jejich volani mohou vyuzivat jen ostatni metody dané
tiidy. Tyto ¢lenské funkce pak nejsou ptistupné z vnéjsku tfidy a miize je pouzivat jen dana tfida.

Priklad

Vytvoite tiidu “Datum ”, kterd umozni pracovat s datumovymi hodnotami den, mésic, rok.
Vytvofite soukromé metody tiidy, které budou kontrolovat spravné hodnoty dne, mésice, roku.
Bude-li hodnota Spatna, vrati metoda nejblizsi spravnou.

// *** Priklad - vytvoreni t¥idy Datum *** //

#include <iostream.h>

#include <string.h>

#include <dos.h>

#include <conio.h>

21

// zacatek deklarace tridy Datum

class Datum

{

private:
int den, mesic, rok;
// Privat metody pro kontrolu spravnych udaje, je-1li hodnota nevyhovujici,
// vrati metoda nejblizsi spravnou hodnotu.
int SpravnyDen (int d);
int SpravnyMesic (int m);
int SpravnyRok (int r);
public:

Datum () ;
Datum (int d, int m, int r);
Datum (int d, char *m, int r);
void VypisDatum() const;
int DejDen () const;
int DejMesic () const;
int DejRok () const;
void ZmenDatum(int d, int m, int r);
void ZmenDen (int d);
void ZmenMesic (int m);
void ZmenRok (int r);
~Datum() {}

}i

// konec deklarace tridy Datum

// definice metod
int Datum::SpravnyDen (int d)

{
if (d>=1 && d<=28) return d;

else
if (d<1l) return 1;
else
{
if (mesic==1 || mesic==3 || mesic==5 || mesic==7 || mesic==8 ||
mesic==10 || mesic==12)
if (d>31) return 31;
if (mesic==4 || mesic==6 || mesic==9 || mesic==11)

if (d>30) return 30;
if (mesic==2)
if ((rok-1980)%4 == 0)
if (d>29) return 29;
else return d;
else
if (d>28) return 28;

}

int Datum::SpravnyMesic (int m)
{
if (m<1l) return 1;
else
if (m>12) return 12;
else return m;

}

int Datum::SpravnyRok (int r)

{

// Chceme pouzit rok pouze v rozmezi 1980 - 1999.

22

if (r<1980) return 1980;
else
if (r>1999) return 1999;
else return r;

}

Datum: :Datum ()

{
struct date d;

getdate (&4d) ;
rok= d.da_ year;
mesic= d.da day;
den= d.da _mon;

}

Datum: :Datum(int d, int m, int r)

{
rok=SpravnyRok (r) ;
mesic=SpravnyMesic (m) ;
den=SpravnyDen (d) ;

}

Datum: :Datum(int d, char *m, int r)

{
rok=SpravnyRok (r) ;

if (strcmp(m,"leden")==0) mesic=1;
else
if (strcmp(m, "unor")==0) mesic=2;
else
if (strcmp(m,"brezen")==0) mesic=3;
else
if (strcmp (m, "duben")==0) mesic=4;
else
if (strcmp(m,"kveten")==0) mesic=5;
else
if (strcmp(m,"cerven")==0) mesic=6;
else
if (strcmp(m, "cervenec")==0) mesic=7;
else
if (strcmp (m,"srpen")==0) mesic=8;
else
if (strcmp(m,"zari")==0) mesic=9;
else
if (strcmp(m,"rijen")==0) mesic=10;
else
if (strcmp(m,"listopad")==0) mesic=11;
else
if (strcmp(m,"prosinec")==0) mesic=12;
else mesic=1; //hodnota v pripade chybneho retezce

den=SpravnyDen (d) ;
}

void Datum::VypisDatum() const

{
cout << den << '.' << mesic << '.' << rok << endl;

}

int Datum::DejDen () const

{

return den;

23

}
int Datum::DejMesic () const
{

return mesic;

}

int Datum::DejRok () const

{ return rok;

ioid Datum: : ZmenDatum(int d, int m, int r)

{ rok=SpravnyRok (r) ;
mesic=SpravnyMesic (m) ;
den=SpravnyDen (d) ;

ioid Datum: :ZmenDen (int d)

{ den=SpravnyDen (d) ;

ioid Datum: :ZmenMesic (int m)

{ mesic=SpravnyMesic (m) ;

ioid Datum: : ZmenRok (int r)

{ rok=SpravnyRok (r) ;

}

// konec definice metod

int main ()
{
Datum dl;
Datum d2(13,2,1998);
Datum d3(13,"cervenec",1998);

clrscr();

dl.VypisDatum() ;
d2.VypisDatum/() ;
d3.VypisDatum() ;

dl.ZmenDatum(29,2,1998);
d2.ZmenDatum(29,2,1980) ;
d3.ZmenDatum(-1,-1,1980) ;

cout << endl;
dl.VypisDatum/() ;
d2.VypisDatum/() ;
d3.VypisDatum() ;
getch () ;
return O;

}

// *** Konec prikladu *** //

4.1.5. Statické datové Cleny a funkce

Statické ¢leny tfidy definujeme pomoci klicového slova static a jsou sdileny vSemi
instancemi dané tiidy. Statické prvky jsou ulozeny mimo objekty dané tfidy a existuji nezavisle

24

na jednotlivych instancich. Dokonce 1 v piipadé, Ze neexistuje zadna instance dané tiidy. Pied
pouzitim instanci nesmime zapomenout inicializovat staticka ¢lenska data.

Statické metody se vétSinou chovaji jako bézné fadové funkce a lisi se od nich obvykle
pouze ptistupovymi pravy. Mlizeme je volat piimo, bez prostfednictvi své instance. Statické
metody nemohou byt virtudlni a nemohou se pietizit.

Priklad:

#include <iostream.h>

class stromy

{

private:
static int celkem; //celkovy polet v8ech stromu
int pocet; //pocet stroml urcitého druhu
public:
stromy (int p) {celkem+=p;pocet=p;} //konstruktor
static void VypisCelkem() ; //statickd metoda

void VypisDruhu() ;
}i

void stromy::VypisCelkem ()
{
cout << "Celkovy polet vSech stromi " << celkem << endl;
}
void stromy: :VypisDruhu ()

{
cout << "Poclet stroml jednoho druhu " << pocet << endl;

}

int stromy::celkem=0; //inicializace statickych Clenskych dat

int main ()
{
stromy smrk(10), Jjedle(2), borovice(8);

smrk.VypisDruhu () ;
jedle.VypisDruhu () ;
borovice.VypisDruhu () ;

stromy: :VypisCelkem() ; //volani statické metody

return 0;

4.1.6. Pratele

V realném zivoté jsme obklopeni, kromé béznych, ostatnich lidi, také zvlastni skupinou,
kterym fikdme pfatele a mame k nim vyjime¢ny vztah. Pijc¢ujeme jim osobni véci, mohou nas
kdykoliv navstévovat a jsme pro n¢ ochotni udélat téméf vse o€ pozadaji.

Podobna filosofie plati i v jazyce C++. Zapouzdieni sice jasn¢ vymezuje piistup ke
¢lentim tfidy, ovSem vyjimka z tohoto pravidla jsou pravé pratelé - friend. Pratelé maji plna

25

pristupova prava ke vSem ¢lentim dané tiidy, i kdyZ jimi nejsou. Nemohou vSak pracovat

s ukazatelem this. Prateli se mohou stat jednotlivé funkce nebo i celé ttidy.
class A

{

friend int £() {...... } //ptratelskd funkce
friend class B; //ptatelskad t¥ida
friend int C::metoda(); //ptratelskd metoda jiné tridy
}
Priklad:

#include <iostream.h>

class rohliky;
class mleko
{
private:
int pocet;
public:
mleko (int p) {pocet=p;}
friend int celkem(rohliky r, mleko m);
}
class rohliky
{
private:
int pocet;
public:
rohliky (int p) {pocet=p;}
friend int celkem(rohliky r, mleko m);
}
int celkem(rohliky r, mleko m)
{
return (r.pocet + m.pocet);
}
int main ()
{
mleko ml (50);
rohliky rh(105);

cout << celkem(ml,rh);
return 0;

4.1.7. Kompozice objektu

Jako datové prvky tfidy mohou byt pouZity i objekty jinych tfid nebo ukazatele na objekty
jinych tiid. Je vSak samoziejmé, ze prvkem tfidy nemuize byt objekt téze ttidy. Takovy prvek by

totiz rekurzivné volal konstruktor, bez ustanoveni hloubky rekurze. Vlozené objekty nebo
ukazatele na objekty se inicializuji v konstruktorech dané tfidy.
Piiklad:

class AAA

{

int pom;

public:

AAA (int p) {pom=p;}

int DejA()const {return pom;}

}i

26

class CCC
{
int hod;
AAA a;
AAA *b;
public:
CCC (int h);//:a(12),hod (h) {}
void Vypis();
~CCC () {delete Db;}
}s
CCC::CCC(int h):a(55),hod (h)
{

b=new AAA (44); //alokace pamé&ti s inicializaci hodnoty
}
void CCC::Vypis ()
{
cout << "hod= "<<hod<<endl;
cout << "a.pom= "<<a.DeJA()<<endl;
cout << "b.pom= "<<b->DejA ()<<endl;
}

int main ()
{
CCC ¢ (1000);

c.Vypis();

return 0;

}
Pokud je ve tfidé vlozeny objekt tvofen dynamicky (viz. Prvek b), je potiebné definovat
explicitni konstruktor, ve kterém bude alokovana pamét’, a destruktor, v némz se pamét’ uvolni.
Soucasti tiidy mtize byt rovnéz ukazatel na objekt, ktery je vSak vytvofen nezavisle na
dané tiid¢ (napt. néjaky globalni objekt). V tomto piipadé konstruktor neptidéluje a destruktor
neuvoliiuje pamét’ pro vlozeny objekt.

4.2. Dédi¢énost - inheritance

Inheritance znamena moznost pridavat k zakladni tfid¢ dalsi vlastnosti a vytvorit tak
odvozenou tiidu. Jsou tfi moznosti, jak tfidu modifikovat: pfidat nové datové ¢leny, ptidat nové
metody, piekryt metody novou definici. V této kapitole se budeme zatim zabyvat pouze
jednoduchou dédi¢nosti. Piiklad dédi¢nosti:

zakladni trida SAVCI - obsahuje vlastnosti spole¢né pro vSechny druhy savct
odvozend trida KOCKOVITE SELMY - obsahuje vlastnosti spolecné pro vSechny

druhy savct a navic specifické vlastnosti vSech druht kockovitych Selem

odvozend trida LEVHARTI - obsahuje vlastnosti spolecné pro vSechny druhy savci,
specifické vlastnosti vSech druhti koc¢kovitych Selem a navic specifické vlastnosti spolecné vsem
levhartim
Ttida T2 odvozené od zakladni tfidy T1 se deklaruje:

class T1 : specifikace pristupu T1 {....};
nebo

struct T1 : specifikace pristupu T1 {....};
Specifikace pfistupu se provadi klicovym slovem public, private nebo je prazdna (pak je
implicitn¢ public, pokud T2 je struct, nebo private, pokud T2 je class).

27

Atributy pfistupu prvki v T1

specifikace piistupu pfi
odvozeni T2 je public

specifikace ptistupu pii
odvozeni T2 je private

private | meeeeeee | e
public public private
protected protected private

-------- - znamena, ze zdédény prvek je nepfistupny i pro ptimy piistup v metodach
odvozené tiidy. Zdédéné metody takovy prvek vyuzivaji stejnym zptsobem jako v zakladni tiid¢.
protected - zdédéné prvky jsou vyuzitelné ve vlastnich metodach odvozené tridy. Nejsou
pristupné vnéjsim piistupem.

public - zdédeéné prvky jsou vyuzitelné ve vlastnich metodach odvozené tfidy. Jsou
ptistupné také i vné&j$im ptistupem.

Co se nedédi:
B konstruktor. Lze jej vyvolat v konstruktoru odvozené tfidy.
B destruktor. Automaticky je volan v destruktoru odvozené ttidy.
B pietiZzeny operator =, new, delete

Pti navrhu dédi¢nosti je potieba postupovat uvazlivé a nevytvaret potomky tam, kde to
neni vhodné. Méjme naptiklad tfidu Datum a dale chceme vytvofit tfidu osobnich udaji Osoba,
ktera obsahuje udaje jako jsou jméno, pfijmeni, adresa a datum narozeni. Je asi jasné, ze tiida
Osoba neni potomkem tiidy Datum, ale pouze obsahuje vlozeny objekt dané tiidy. Naopak
budeme-li chtit vytvofit tfidu Zaméstnanec, kterd obsahuje stejné osobni udaje jako tiida Osoba a
nekterd dalsi specificka data a metody, pak Zameéstnanec je potomkem Osoby. Jednoduse
milZzeme fict, ze potomky tfid vytvatime, kdyZ si mizeme kladn€¢ odpoveédét na otazku je?
(Zameéstnanec je Osoba). Kompozice se vytvari pii otazce ma? (Osoba ma Datum).

Priklad:

#include <iostream.h>
#include <string.h>
#include <stdlib.h>

class RodneCislo
{
private:
char rodcis[12];
int pohlavi;
public:
RodneCislo (char * r);

// 0 - zena, 1 - muz

char *DejRC() const;
int DejDen () const;
int DejMes () const;
int DejRok () const; // rozmezi let 1900 - 1999

int DejPohlavi () const;
void ZmenRC (char *r);
}i

class Osoba
{
private:
char jmeno[20],prijmeni[20];
public:

28

RodneCislo rc; // Kompozice
Osoba (char *,char *, char *);
char *DejJdmeno () const;

char *DejPrijmeni () const;
void ZmenJmeno (char *);
void ZmenPrijmeni (char *);

}i

class Zamestnanec:public Osoba //Dédicnost
{
private:
long int plat;
int provoz;

public:
Zamestnanec (char *,char *, char *, long int, int);
int DejProvoz () const;

long int DejPlat () const;

void ZmenProvoz (int) ;

void ZmenPlat (long int);
}i

/**********‘k metody trldy Rodnecislo ************/
RodneCislo: :RodneCislo (char *r)
{
strcpy (rodcis, r);
pohlavi=DejPohlavi () ;
}

char *RodneCislo::DejRC() const
{
char *pom;
pom=new char[1l2];
strcpy (pom, rodcis) ;
return pom;

}

int RodneCislo::DejDen () const

{
char pom[3];

pom[0]=rodcis[4];
pom[l]=rodcis[5];
pom[2]="\0";
return (atoi (pom)) ;
}
int RodneCislo::DejMes () const
{
char pom[3];
pom[0]=rodcis[2];
pom[l]=rodcis[3];
pom[2]="\0";

return (DejPohlavi()==0)7? (atoi (pom)-50):atoi (pom) ;
}
int RodneCislo::DejRok () const
{

char pom[3];

pom[0]=rodcis[0];

29

pom[l]=rodcis[1];

pom[2]="\0";

return (atoi (pom)+1900); //rozmezi let 1900 - 1999
}

int RodneCislo::DejPohlavi () const

{

char pom[3];

pom[0]=rodcis[2];
pom[l]=rodcis[3];
pom[2]="\0";

return (atoi (pom)>50)720:1;
}

vold RodneCislo: :ZmenRC (char *r)
{
strcpy (rodcis, r);
pohlavi=DejPohlavi () ;
}

/*********** metody trldy Osoba ************/
Osoba: :0soba (char *j,char *p, char *r):rc(r)
{
strcpy (jmeno, j) ;
strcpy (prijmeni, p) ;
}
char *Osoba::DejJdmeno () const
{
char *pom;
pom=new char[20];
strcpy (pom, jmeno) ;
return pom;
}
char *Osoba::DejPrijmeni () const
{
char *pom;
pom=new char[20];
strcpy (pom, prijmeni) ;
return pom;
}
void Osoba::Zmendmeno (char *7j)
{
strcpy (jmeno, J) ;
}
void Osoba::ZmenPrijmeni (char *p)
{
strcpy (prijmeni, p);
}
/*********** metody trldy Zamestnanec ************/
Zamestnanec: :Zamestnanec (char *j,char *p, char *r, long int pl,
:0Osoba (j,p,)
{
plat=pl;
provoz=pr;
}
int Zamestnanec::DejProvoz () const

{

return provoz;

int pr)

30

}
long int Zamestnanec::DejPlat () const
{
return plat;
}
void Zamestnanec::ZmenProvoz (int p)
{
provoz=p;
}
void Zamestnanec::ZmenPlat (long int p)
{
plat =p;
}
[xFAFXxEE pretypovani operatoru << xxkkxxw/
ostream &operator<<(ostream &vys,RodneCislo r)
{
vys << "Datum narozeni: " <<r.DejDen()<<'.'<<r.DejMes ()<<'.'
<< r.DejRok () ;
return vys;
}
ostream &operator<<(ostream &vys,Osoba o)

{

vys << "Jmeno: " << o.DejJdmeno () << endl
<< "Prijmeni: " << o0.DejPrijmeni () << endl
<< "Rodne cislo: " << o.rc.DejRC() << endl;

vys << o.rc << endl
<< "pohlavi: "
char pom[5];
(o.rc.DejPohlavi ()==0) ?strcpy (pom, "zena") :strcpy (pom, "muz") ;
vys << pom <<endl;
return vys;
}
ostream &operator<<(ostream &vys,Zamestnanec o)

{

vys << "Jmeno: " << o.Dejdmeno () << endl

<< "Prijmeni: " << o.DejPrijmeni () << endl

<< "Rodne cislo: " << o.rc.DejRC() << endl;
vys << o.rc << endl

<< "Plat : " << o.DejPlat() << endl

<< "Cislo provozu: " << o.DejProvoz () << endl

<< "Pohlavi: "
char pom[5];
(o.rc.DejPohlavi ()==0) ?strcpy (pom, "zena") :strcpy (pom, "muz") ;
vys << pom <<endl;
return vys;

}

//**k*k‘k*k*k‘k**k*k‘k*k hlavni funkce KAk hAkhAkAkAAAAA A XA AKX kK%

int main ()

{
RodneCislo r("655510/5555") ;
cout << r.DejDen()<<'.'<<r.DejMes ()<<'.'<<r.DejRok ()<<endl;
cout << r.DejPohlavi ()<<endl;

cout << r << endl;

Osoba Pavel ("Pavel", "Novacek","671210/4455") ;
cout << Pavel;

31

Zamestnanec Jiri ("Jiri","Ferenc","641201/2225",120850,2);
cout << Jiri;

return 0;

}

/************ KONEC *k‘k*k‘k‘k*k‘k‘k*k*‘k‘k/

4.3. Polymorfismus

Prekladac za normalnich okolnosti vyuziva tzv. casnou vazbu (early binding), ktera pii
volani metody vyhodnocuje typ instance jiz v dob¢ piekladu. Potiebujeme-li vSak pracovat
s potomkem pomoci ukazatele na piedka, dostaneme se do problému, nebot’ se zavold misto
predefinované metody potomka piivodni metoda piedka. Abychom se mohli vyhnout témto
problémim, zavadi jazyk C++ tzv. virtualni metody. Ttidy, které obsahuji takovéto metody se pak
oznacuji jako polymorfni.

4.3.1. Virtualni metody

Chceme-li se prenechat rozhodnuti, ktera ptekrytd metoda bude volana, az v prabehu
programu, musime metodu oznacit klicovym slovem virtual. Timto davame piekladaci najevo, ze
si ptejeme vyuzit dynamickou nebo-li pozdni vazbu (late binding) pied statickou (nebo radéji
casnou) vazbou (early binding).

Priklad:
#include <iostream.h>
#include <string.h>

#include <stdlib.h>
#include <conio.h>

class A

{
int a;

public:

A(int h) :a(h) {cout << "Konstruktor A"<<endl;}
virtual ~A() {cout << "Destruktor A"<<endl;}
virtual void Tisk() const { cout <<"Trida A " << a << endl;}
int DejA() const {return a;}

}s

class B:public A

int b;

public:
B(int h) :A(h),b(h) {cout << "Konstruktor B"<<endl;}
virtual ~B() {cout << "Destruktor B"<<endl;}

virtual void Tisk () const { cout <<"Trida B " << b << " A "<< DejA()<<

endl; }
}i
int main ()
{

B bb(100); //U této instance se bude uplatriovat statickéa vazba

//a prekladal pouZije spravnou metodu Tisk() ze t¥id B
A *pb; //U této instance chceme uplatnit dynamickou vazbu

//a prekladal pouZije spravnou metodu Tisk () jedinég,
//v ptripadé&, Ze Jje definovanad v rodic¢i Jjako virtudlni metoda
bb.Tisk();

pb=new B(11); //AZ nyni se rozhoduji pro instanci potomka
pb->Tisk () ; //Pouzije metodu ze t¥idy B

32

delete pb; //Uvolni se pamé&t a zaroveill se zavolaji destruktory

getch () ;
return 0;
}

Jestlize pfi volani virtualni metody nepouzijeme ukazatele, nemusi se pozdni vazba
uplatnit (napt. bb. Tisk(),).

Pokud metodu oznacime slovem virtual, pak se metoda automaticky stava virtualni i ve
vSech potomcich. Klicové slovo virtual neni nutné v deklaraci potomkt psat, ale z hlediska
piehlednosti se to doporucuje. Klicové slovo se nepiSe pii definici virtudlni funkce. Jakmile
nékterou metodu definujeme jako virtualni, prekladac prida ke tiidé neviditelny ukazatel, ktery
ukazuje do specialni tabulky nazyvané tabulka virtualnich metod (Virtual Method Table déle jen
VMT). Pro kazdou ttidu, ktera ma alespon jednu virtudlni metodu prekladac vytvoii tabulku
virtudlnich metod, ve které budou adresy vSech virtualnich metod ttidy. Tabulka je spole¢na pro
vSechny instance dané tfidy. Adresa VMT se ulozi automaticky do instance konstruktorem.

Mize definovat i virtualni destruktor. N&kdy je to pfimo nutnost definovat destruktor
jako virtualni. Mame-li naptiklad seznam rtiznych objekti, ktery chceme vyprazdnit, musi se
skute¢ny typ destruktoru ur€it az v prabehu programu.

Naopak konstruktory nemohou byt virtualni, nebot’ pted jejich volanim neni jesté
vytvorena VMT. Uvniti konstruktorii sice miizeme volat virtudlni metody, ale ty se budou chovat
nevirtualn¢. Divodem je, Ze pied volanim konstruktoru potomka, se musi nejprve volat
konstruktor ptedka a ten ulozi do odkazu na VMT adresu tabulky virtudlnich metod ptredka.
Teprve potom piijde na fadu konstruktor potomka s odkazy na VMT adresu tabulky potomka.
Podobna situace s odkazy je i u destruktori,samoziejmée v opa¢ném potadi.

Polymorfismus ma samoziejmeé i své stinné stranky. Potfebou vytvoreni VMT se zvySuji
naroky na pamét’, prekladac musi zavést ukazatel VMT, voléani virtudlnich metod je pochopitelné
pomalej$i, nez metod nevirtudlnich (n€kdy se tiké statickych, coz neni moc vhodné, nebot’
statickou metodu jsme oznacovali metodu s klicovym slovem static).

4..3.2. Abstraktni a instan¢ni tfidy

Pti névrhu hierarchie tiid obcas potiebujeme vytvoftit zékladni rodi¢ovskou tfidu, od které
se budou vyvijet vSichni potomci, ale ze které nechceme vytvaret Zadné instance. Pak takovou
tiidu nazyvame abstraktni tiida. Jazyk C++ nabizi moznost vytvofit Cisté virtualni metodu (pure
virtual method), ktera se deklaruje takto:

hlavicka_metody=0;
Priklad:
class Objekt
{
public:
Objekt () ;
~Objekt () ;
void Nakresli();
void Smaz () ;
virtual void Zobraz (int barva)=0;
}i
V ptipad¢, ze tiida obsahuje alespon jednu ¢isté virtualni metodu, pak ptekladac¢ nedovoli
definovat instanci této abstraktni tridy. Ostatnim tfidam fikame nekdy instancni tridy.

33

4.3. Vicenasobna dédi¢nost
Mame-li tfidu vytvofit jako potomka vice nez jedné tfidy najednou, hovotfime o tzv.
vicenasobné dedicnosti. Témét kazdy problém lze sice zvladnout jen pomoci jednoduché
dédicnosti, ale mnohdy nam vicenasobna dédi¢nost zjednodusi a zkrati dobu névrhu a feseni (viz.
datové proudy).
Priklad:

class A

{ /] };

ABC (int a, int b, int c):C(c),B(b),A(a) {//...}

Poradi rodi¢ovskych tiid pti deklaraci tfidy urcuje potadi volani konstruktor
rodiCovskych tiid a opacné volani destruktort téchto tiid. Je-li vSak pti definici konstruktoru
potomka piedepsano potadi volani rodicovskych konstruktort, pak toto pofadi ma prednost pred
potadi v deklaraci tfidy. Stejné jako u jednoduché dédi¢nosti mize potomek zastoupit predka.
Pretypovani ukazatele na tfidu potomka na ukazatel na ttidu pifedka se v C++ d¢je automaticky.
Obracenym zptisobem se pretypovani nedéje automaticky, ale je potieba je explicitné zajistit
pomoci ptislusnych operatort.

Pti vicenasobné dédicnosti je vSak potieba postupovat v navrhu opatrné. Mlze se
napiiklad stat, ze dva nebo vice predkli obsahuje prvky stejného jména. Mé&jme naptiklad
rodicovskou tfidu 4, jeji dva potomky tiidu B a C. Tyto dv¢ tfidy maji pak spole¢ného potomka
tiidu D. V takovémto ptipadé je nutné tiidu 4

definovat jako virtudlni bdazovou tridu, aby se

v instanci tfidy D, nevolal konstruktor tfidy A @
dvakrat.

Priklad: o

class A

{ VA i

class B: virtual public A

{ VA bi
class C: virtual public A

{ VA bi
class D: public B, public C
{ VA bi

V ptipad¢, ze tiidu A zdédime jak virtualng, tak i nevirtualné, se vSechny virtudlné
zdédéné podobjekty dané ttidy slouci. To znamena, ze vysledna tiida bude obsahovat tolik
podobjekti dané tfidy A, kolikrat je tato tfida nevirtualnim predkem, a jeden spole¢ny (slouceny)
podobjekt A za vSechny virtudlni predky tiidy A.

Pti vytvareni konstruktorti plati, ze nejprve se volaji virtualni konstruktory v potadi,v
némz jsou v deklaraci, a po nich nevirtudlni konstruktory v pofadi ur¢eném deklaraci.
Destruktory se volaji v opacném poradi.

34

5. Sablony

Sablona specifikuje, jak definovat skupinu ptibuznych tiid. Mé&jme napiiklad vytvotenou
tiidu zasobnik, ktery uchovava cela ¢isla. Budeme-li vSak chtit pracovat v zasobniku s fetézci
znaki, je ndmi vytvorena tfida nepouzitelna, prestoze operace na zasobniku jsou stejné a jen se
zmeénil datovy typ jednotlivych hodnot na zasobniku. Abychom nemuseli psat novy kod pro dalsi
datovy typ, poskytuje jazyk C++ nastroj umoziiujici vytvoftit abstraktni vzor zvany sablony
(templates). Nékdy hovotime také o generickych nebo parametrizovanych konstrukcich.

template <class typ> class AA{};

V lomenych zavorkach jsou formalni parametry, které mohou byt bud’ #ypové nebo hodnotove.
S hodnotovymi parametry se setkdvame u obyc¢ejnych funkci (int, unsigned, atd; nelze pouzit
objektové typy nebo pole). Mizeme u nich ptedepsat implicitni hodnoty. Naopak typové
parametry jsou uvedeny klicovym slovem class (v novéjSich piekladacich je mozné pouzit i
typename) a specifikuji datové typy.

Priklad Sablony fadovych funkci (funkci, které nejsou metodami ttid):

template <class typ> typ Maximum(typ a,typ b); //deklarace

template <class typ> typ Maximum(typ a,typ b)
// nebo template <typename typ> typ Maximum(typ a,typ b)
{
return (a<b)<b:a;
}
Je vSak potieba si uvédomit, Ze pfi generovani instance Sablony se neprovadéji ani trividlni
konverze parametri, to znamena,ze s nasledujicim ptikladem si nase Sablona neporadi.
const int X=100;
char c="A";

int y=25;

cout << Maximum (X,Y); //chyba! V Borland C/C++ 3.1 pracuje!
cout << Maximum(c,Y); //chyba!

Cout << Maximum((int)c,Y); //spravné

Deklarace $sablon objektového typu ma tvar
template <class typ> class AA;

template <class typ> class AA
{
typ h;
public:
AA(typ x);
typ DejA();
}i
template <class typ> AA<typ>::AA(typ X)
{
h=x;
}
template <class typ> typ AA<typ>::DejA()
{
return h;

}

int main ()

35

AA<int> a(l5); //instance 3ablony
cout << a.DejA();

return 0;

36

6. Vyjimky

Prostfedky pro praci s vyjimkami se objevuji az v novéjsich prekladacich jazyka C++
(Borland C++ 4.0, Visual C++ 2.0, Watcom C++ 10.5). Co je vlastn€ vyjimka? Jedna se o
situaci, kdy program nemiize pokra¢ovat obvyklym zpiisobem, nastane vlastné béhova chyba. Ne
vzdy je mozné program ukoncit z divodu béhové chyby. Nékteré aplikaci vyzaduji, aby
v piipadé chyby se pies ni program urcitym zptisobem pienesl a pokracoval v dalsi ¢asti.

Jazyk C++ umoziiuje pracovat pouze s tzv. synchronnimi vyjimkami, to znamena
vyjimkami, které vzniknou uvnitt programu. VSechny operace, které jsou jistym zptisobem
nebezpecné a jejichz provadéni by se nemuselo podatit, provadime v Alidaném bloku (guarded
block), ktery se sklada s pokusného bloku (try block) a z jednoho nebo né€kolika handleru
(exception handler). V pokusném bloku se provadéji operace, které¢ by mohly vyvolat vyjimku.
Pokud ta nenastane, provedou se vSechny piikazy pokusného bloku a ¢ast s handlery se pieskoci.
Pokud se vsak néktera operace v pokusném bloku nepodaii, zakon¢i se provadéni tohoto bloku a
fizeni programu pievezme néktery z handler. Nebude-li handlerem program ukoncen, pokracuje
za hlidanym blokem.

Pro praci s vyjimkami slouZi tato klicova slova: try, catch a throw. Klicové slovo try
slouzi jako prefix pokusného bloku, handlery uvadi klicové slovo catch a throw piedstavuje
operator, ktery vyjimku vyvola.

Ptiklad: Vytvotime tfidu seznam, ktera bude obsahovat proménnou udavajici pocet prvki. Pro
zjednoduseni si vytvoiime pouze metodu, ktera zmensuje pocet prvki. Vyjimka ma nastat tehdy,

pokusime-li se odebirat z prazdného seznamu.
#include <iostream.h>
#include <stdlib.h>

const int N=12; //schvalne je vetsi hodnota, aby se vyvolala vyjimka
class Vyjimka
{
char *text;
public:
Vyjimka (char *t) :text(t) {}
char *DejText () const {return text;}
}i

class Seznam
{
int pocet;
public:
Seznam (int x) :pocet(x) {}
int Odeber () throw (Vyjimka);
}i

int Seznam: :0deber () throw (Vyjimka)

{
if (pocet==0) throw Vyjimka ("Seznam je prazdny");
int p =pocet;
pocet—-—;

return p;

}

int main ()

{

Seznam s (10);

clrscr();
try //Pokusny blok
{
for (int i=0;i<N;i++)
cout << s.0Odeber();
}
catch (Vyjimka v)
{
cout << v.DejText();
exit (1) ;
}

return 0O;

37

38

7. Pretypovani

Kromé bézné operace (€ast) zavadi C++cCtyii nové operatory k pretypovani:
dynamic_cast - pouziva se pro bezpecné pretypovani polymorfnich tiid, k pretypovani
mezi potomky a predky a jako jediny z téchto operatorit mize vyuZzivat dynamické identifikace
typu.

static_cast - slouzi k béznému pretypovani z predka na potomka nebo naopak bez
dynamické kontroly typti

reinterpret_cast - umoznuje konverze jejichz vysledek mize byt zavisly na implementaci,
cilovéplatformé nebo pamétovém modulu.

const_cast - jako jediny z operatori umoziuje vytvoftit z nekonstanty konstantu a
naopak, popiipadé pridavat ¢i odebirat modifikator volatile.

Priklad pouziti:

class A{....};

class B:public A
{.c... I

int main ()

*
jol
()]

pa=dynamic_ c¢ast<A*>(pb);

Text neni dokoncen!

39

Literatura

R. Pecinovsky, M. Virius ~ Objektové programovani I Grada, 1996

R. Pecinovsky, M. Virius ~ Objektové programovani I1 Grada, 1996

M. Virius Pasti a propasti jazyka C++ Grada, 1997

B. Stroustrup C++ Programovaci jazyk BEN, 1997

S. Racek Objektove orientované programovani v C++ KOPP, 1994

K. Nenadal, D. Vaclavikova Borland C++ Grada, 1992

G. Renner Borland C++ kompendium UNIS, 1992

A. Vecerka Jazyk C++ UP Olomouc, 1996

I. Vondrak, P. Saloun Objektové orientované programovani VSB-TU Ostrava, 1995
D. Kaémar Programovani v jazyce C++ VSB-TU Ostrava, 1995

M. Virius C++ pro nés ostatni, kurs v ¢asopise Softwarové noviny, rocnik 1996 a vys

