Prvni zacatky s C

Struktura programu a zakladni prvky

Jazyk C/C++ , co se ty€e struktury souboru, je daleko volngjSi
oproti jinym programovacim jazykim. V podstaté je jedno, kde
deklarujete proménnou nebo novy typ. V souboru se rozliSuji
pouze urcité bloky a platnost proménné zacina od mista
deklarace a kon¢&i koncem bloku, v némz je deklarovana.

{ Il Zacat ek ng&j akého bl oku

pri kazl;
pri kaz2;

pri kazn;
} // Konec nég&jakého bl oku

Kazdy pfikaz je ukonéen stfednikem. Na jednom rfadku maze
byt za sebou i nékolik prikazli, vSechny vSak musi byt oddéleny
stfednikem (pfikazl; pfikaz2; pfikaz3).

2002 2

Zakladni terminy (1)

Kliéova slova
jsou jednodusSe fe€eno pfikazy jazyka, které jsou presné
dany, nedaji se pfedefinovat.
Napf.for, while, if atd...

Konstanty
deli se na numericke, znakové a textové (literaly),
nenumericke, ... Je to obdoba proménnych, ktere maiji
ovSem po nadefinovani neménnou hodnotu.
Operatory
zajistuji provedeni urcité akce nad urcitymi operandy.
Prikladem operatoru je operator pro secteni dvou
operandu (+).
Identifikatory
jsou to oznaceni patfici riznym proménnym, typdm,
funkcim, objektiim atd... daného programu. Musi

zacinat pismenem a dalSi znaky mohou byt &isla nebo
pismena.

Zakladni terminy (2)

2002

o Navesti
urcity bod v programu, na ktery je "odskakovano" po
zavolani pfikazu skoku (got 0). Jsou zde zafazena
pfedevsim z historického hlediska. V klasickych
metodach strukturovaného programovani se pouzivaji
velice zfidka.

« Komentar

text, ktery mizeme vlozit do programu. Nema zadny vliv
na béh programu. Je uréen k zlepSeni Citelnosti
zdrojoveho textu a tak k rychlejSi orientaci. Komentar je
uvozen bud znaky // (dvé lomitka) nebo /* (lomitko a
hned za nim hvézdic¢ka). Komentar uvozeny // ma
platnost od uvedeni lomitek az do konce Fadku,
komentar /* ma platnost od tohoto zacatku az do mista,
kde jsou znaky */ (hvézdi¢ka a lomitko), které identifikuji
konec komentare. Textu v komentafich si pfekladac
vibec nevSima. A pred vlastnim spusténim programu
provede jeho odstranéni (preprocesor).

2002 4

Jednoduché datové typy a pfifazeni (1)

Jednoduché datové typy a pfifazeni (2)

C poskytuje podobné datové typy jako Pascal:

Pascal C

| NTEGER i nt
| ong int téZl ong
short int téZshort

CHAR char
REAL fl oat
doubl e

| ong doubl e

2002

* Typyint, long int, short int a char mohou byt
— signed, implicitni pro int, long int, short int, (pro char zaleZi na
implementaci)
— unsigned, (unsigned int se €asto zkracuje jen na unsigned)
— Rozsah signed (znaménkovy) a unsigned (neznaménkovy) Cisel:

« Proménné typu unsigned maji rozsah od 0 do 21, kde n je pocet bitli
proménné. (Unsigned typ nemuze zobrazit zaporné &islo)
» rozsah signed proménnych je od -271 do +2™1 - 1 (polovi¢ni rozsah
typu unsigned).
— Priklad pro typ char, ktery je vzdy 1 Byte (8 bitu) dlouhy:

» unsigned char 0 az 255
» signed char -128 az +127

» C neposkytuje pfimo typ Boolean. Booleovské hodnoty jsou
reprezentovany pomoci celo&iselnych (int) hodnot, kde:

— nulova hodnota (0) FALSE
— nenulové hodnota (nejCastéji 1) TRUE
» Typ double ma pfesnost asi na 20 desetinnych mist

2002

Definice proménnych

ldentifikatory

Definice je pfikaz, ktery pridéli proménné uréitého typu jméno a pamét

Deklarace je pfikaz, ktery pouze udava typ proménné a jeji jméno
(nepfidéluje pamét!)

V C jsou definice v obraceném poradi nez v Pascalu:

Pascal C
Var i . | NTEGER,; i nt i
c,ch : CHAR char ¢, ch;
f,g © REAL; float f,g;
Pozn:

Definice proménné vné funkce (globalni proménna) nebo uvnitf funkce (lokalni
proménna)

int i; /* gl obal ni pronmenna */

int main()

{
int j; /* | okdl ni promenna */

}

Jazyk C je case sensitive jazyk (rozliSuje mala a velka
pismena).

prom Prom PROM jsou tfi rlizné identifikatory!

Klicova slova C (napt. i f, whi | e, regi st er, ...) musi byt psana malymi
pismeny. Jsou-li zapsana velkymi nebo kombinaci malych a velkych
pismen, berou se jako identifikatory.

C dovoluje u identifikatorl pouZivat znak podtrzitko " "
_prom nepouzivat, znamena to systémovy identifikator
prom_ pouzivat ¢asto, zprehledruje text
prom_ nepouzivat, na konci se ¢asto prehlédne

Délka identifikatoru neni omezena, ale ANSI C rozeznava

obecné pouze prvnich 31 znaki (32. dalsi jsou bezvyznamné)

2002

2002

Prifazeni

Hlavni program (1)

Casto se pracuje s pojmem /-hodnota (I-value). L-hodnota predstavuje
adresu, tedy napf. proménné (x) je I-hodnotou, ale konstanta (123) nebo
vyraz (x+3) I-hodnotou nejsou.

L-hodnota je to, co mlZe byt na levé strané pfifazeni.

cesky anglicky symbolicky prakticky
vyraz expression vyraz i *2+3
pfifazeni assignment I-hodnota=vyraz j =i *2+3
piikaz statement I-hodnota=vyraz; j =i *2+3;
Priklad - rlzné typy pfifazovacich pfikaz(:

Pascal c

j 1=5; j =5;

d:="z2"; d="2z",;

f =1 +3.14 * i; f=f+3.14 * i,

ProtoZze pfifazeni je vyraz, je mozné nékolikanasobné pfifazeni:

k = j =i = 2;
které se vyhodnocuje zprava doleva tedy: k = (j (i =2));

Hlavni program v C se jmenuje vZzdy mai n a musi byt v programu uveden -
je to prvni funkce volana po spusténi programu.

Pascal C
PROGRAM POKUS(| NPUT, QUTPUT) ; int main() bezstredniku!

Funkce mai n je normalni funkce v C, odliSuje se od ostatnich pouze tim, ze

je vyvolana na za¢atku programu jako prvni

Pascal C
PROGRAM POKUS(| NPUT, OUTPUT) ; int main() /* bezstredniku! %/
VAR {
i,j 1 INTEGER,; inti, j;
BEGIN
i:=5; i=5;
j=-L j=-1
j=j+2 i=i+2r
END. }

2002

2002

10

Hlavni program (2)

Konstanty - celo€iselné

« Pascalovské BEGIN a END je v C nahrazeno znaky "{" a "}"
e Zavorky "{ }" neuzaviraji pouze sloZeny pfikaz, ale i blok
« Bezprostfedné za kazdou "{" mohou byt definice

Blok Slozeny pfikaz
seznam definici ndsledovany pouze seznam pﬁkaz[]
seznamem piikazl {
{)) i =5
int i; i =6
i = 5; }
j =6

}

* Na rozdil od Pascalu, umoznuije C inicializaci proménnych pfimo v definici, takze
predchozi priklad bude také spravné kdyz:
int main()
{
int i
i
o=

+ 0o
N9«
*

}

» desitkové (decimalni)
— posloupnost &islic, z nichZz prvni nesmi byt nula
» Priklad: 15, 0, 1
» osmicékové (oktaloveé)
— Cislice 0 nasledovana posloupnosti osmi¢kovych &islic (0 - 7)
 Priklad: 065, 015, 0, 01
» Sestnactkoveé (hexadecimalni)
— Cislice 0 nasledovana znakem x (nebo X) a posloupnosti
hexadecimalnich &islic (0 - 9,a - f, A - F)
o Priklad: 0x12, 0X3A, OXCD, O0xCD, OXcd, 0x15, 0x0, Ox1
Typ konstanty je ur€en implicitné jeji velikosti nebo explicitné
pouzitim pfipony:
Priklad: 12345678L - konstanta typu long
12345LU - konstanta typu long unsigned

2002

11

2002

12

Konstanty - realné

Tvofi se podle béznych zvyklosti
Mohou zacinat a kon¢it desetinnou te¢kou (ne ¢arkou!)

Implicitné jsou typu double
* Piiklad: 15. 56.8 .84 3.14 5e6 7E23

Realn& konstanta typu float se definuje pomoci pfipony F
(nebo f)
« Priklad: 3.14f 3.14F

Realna konstanta typu long double pomoci L (nebo I)
« Priklad: 12e3L 12E3L 12e3l
(malé I radéji nepouzivat, muZe se lehce zaménit za 1)

Konstanty - znakoveé

» Stejné jako v Pascalu se uzaviraji mezi apostrofy
« Priklad:"a', '*'," 4

» Hodnota znakovych konstant (ordinalni €islo) je odvozena z
odpovidajici kddové tabulky — nej¢astéji ASCII.

» Velikost znakové konstanty je int a ne char !

» Znakova konstanta z neviditelného znaku — ' \ ddd' , kde
ddd je kéd znaku slozeny ze tfi oktalovych Eislic
e Priklad: '\ 012', '\ 007

2002

13

2002 14

Konstanty — fetézcové (literaly)

Uzaviraji se mezi uvozovky (narozdil od Pascalu)

Pfiklad: " Toto je retezcova konstanta"

Aritmetické vyrazy

2002

15

Prikazem se stava vyraz ukoncéeny stfednikem
Priklad: i 2 vyraz s pfifazenim
i 2; prikaz

Samotny stfednik se pouZziva pro prazdny pfikaz (null
statement), ktery se pouziva napf. v cyklu while nebo for

2002 16

Aritmetické vyrazy — unarni operéatory

Aritmetické vyrazy — binarni operéatory (1)

cC
>
D
=
S 2
I

Oba operatory se pouZzivaji v béZném vyznamu

2002 17

~r v oz

Z vétsi ¢asti maji stejny vyznam jako v Pascalu:

Pascal C
— Scitani + +
— Ode¢itani - -
— Nasobeni * *
— Realné déleni / /
— Celociselné déleni Dl Vv /
— Déleni modulo MOD %

Zda bude déleni celo¢iselné nebo realné, zavisi na typu operandu:

int/int - celociselné
int / float - reélné
float / int - realné
float / float - reélné

Pozn.: Pro double a long double plati totéz co pro float.

2002 18

Aritmetické vyrazy — binarni operéatory (2)

Aritmetické vyrazy — specialni unarni operéatory (1)

Priklad:
int i =5 j =13;
=04 - celogiselné déleni, j bude 3
j =1 %3; - déleni modulo, j bude 2

2002 19

V Pascalu nemaji obdobu

inkrement ++
dekrement - -
Oba operatory se daji pouzit jako pfedpony (prefix) i jako
pfipony (suffix):
++vyraz

— inkrementovani pred pouZitim
— vyraz je nejprve zvétSen o jednic¢ku a pak je tato nova hodnota
vracena jako hodnota vyrazu

vyraz++
— inkrementovani po pouziti
— je vracena plvodni hodnota vyrazu a pak je vyraz zvétSen o
jednicku
Pozor: Vyraz musi byt I-hodnota (tedy proménna).
45++ nebo --(i+j) je chybné!

2002 20

Aritmetické vyrazy — specialni unarni operéatory (2)

Priklad:
Ruzna pouziti operatoru ++ a - -
int i=5 j=1, k;

i ++: -i bude 6

j=++i -j bude7,i bude?7

j =i+ -j bude 7,i bude 8
k=--j+2; -k bude 8, bude 6,i bude 8

Aritmetické vyrazy — pfifazovaci operatory (1)

2002

21

Operator pfifazeni - Pascalu: : =
-C: =

rv

C ma navic celou rfadu rozsifenych pfifazovacich operator(.
Misto pfifazeni:

I-hodnota = I-hodnota operator vyraz
se velmi ¢asto pouziva zkraceny zapis:

I-hodnota operator= vyraz

2002 22

Aritmetické vyrazy — pfFifazovaci operatory (2)

Daji se pouzit nasledujici pfifazeni:
I-hodnota += vyraz I-hodnota = |I-hodnota + vyraz
I-hodnota - = vyraz I-hodnota = I-hodnota + vyraz
I-hodnota *= vyraz I-hodnota = I-hodnota * vyraz
I-hodnota | = vyraz I-hodnota = I-hodnota | vyraz
I-hodnota % vyraz I-hodnota = |I-hodnota Y%vyraz

Pozn.:

Mezi operatorem a rovnitkem se nedava mezera.
ne j +=5; ae j += 5;

Priklad:
int i =4, j =3;
j o= j bude 7
j 1= --i; j bude 2,i bude 3
jor=io-2 j=i*(i-2)=2
nej=j*i-2=4

Komentare (1)

2002

23

PrestoZe jsou velmi ¢asto opomijeny, jsou dlilezitou soucéasti
programu:

— zprehlednuji, nékdy na prvni pohled dost nepochopitelny,
program

— slouZi k tomu, aby se ve vaSem programu vyznal nékdo cizi
nebo i vy sami, kdyZ se k nému vratite tfeba za nékolik let

— doporucéuje se komentovat své programy b&éhem vytvareni, a
ne az po odladéni (,AZ na to nékdy zbude ¢as.")

/* toto je komentar */

[* vi ceradkovy
konent ar

*/

x=3*a+b; /* popis prikazu */

2002 24

Komentare (2)

Terminalovy vstup a vystup

v

Nékdy se mizeme setkat s jinym stylem psani komentara,
ktery neni v normé ANSI C a nazyva se jednofadkovy
komentar.

— Zacina dvaoijici // a kon&i koncem radku

— Byl zaveden pro C++. Jeho pouZiti v programech C je sice
technicky nespravné, ale vétSina prekladacu jej bude
akceptovat.

x=3*a+b; [l popis prikazu
je totéz jako

x=3*a+b; [* popis prikazu */

V C se (narozdil od Pascalu) nedefinuje Zadna I/O
(vstupné/vystupni — Input/Output) operace jako ¢ast jazyka.

Nezbytné vstupy a vystupy jsou feSeny tak, Ze standardni
knihovna obsahuje nékolik funkci, které 1/0 zajistuji.

Davod:

Nejvice strojové zavislé akce jsou prave I/O a timto se tedy
dusledné oddéluji strojove zavislé a strojové nezavislé ¢asti
jazyka.

Tato skuteénost je pak vyznamnym pifinosem pfi vytvareni
kompilatoru pro jiny pocitag.

2002 25

2002 26

Hlaviékovy soubor stdio. h a math. h

Vstup a vystup znaku

Aby bylo mozné spravné pouzivat vSechny funkce pro vstup a
vystup, je nutné na zacatku programu pfipojit "popis” téchto
funkci. Ten se nachazi v hlavickovém (header) souboru
st di 0. h a do programu se pfipoji pomoci pfikazu:

#i ncl ude <stdi o. h> na konci neni strednik !

Od tohoto okamzZiku je mozné pouzivat dale popisované funkce

Pro vyuZzivani standardnich matematickych funkci (sin, cos,
sqrt, apod.) existuje hlavickovy soubor mat h. h

#i ncl ude <mat h. h>
c=sqgrt (a+b);

2002 27

put char () vystup jednoho znaku
get char () vstup jednoho znaku
Obeé funkce pracuji s proménnymi typu int a ne char

Priklad:
Program precte znak z klavesnice, vytiskne ho a odfadkuje.
#i ncl ude <stdio. h>
i nt main()
{

int c;

c = getchar();

put char(c);

putchar('\n');
}

2002 28

Forméatovany vstup a vystup (1)

C Pascal
Vstup scanf () READ
Vystup printf() WRITE

Zakladni pouziti:
 Pfikaz: scanf("%", &)
precte z klavesnice celé &islo a ulozi ho do proménné i
o "0o@" uréuje format &teni (zde dekadicky celocisleny)
e &pfedi je nezbytné nutny (vynechani je ¢astou chybou)
 Pfikaz: printf("%",i)
vytiskne na obrazovku hodnotu proménné i
e "0o@" urCuje format vypisu (zde dekadicky celocisleny)

e pfedi neni &, coz je rozdil proti scanf ()
(je to hodnota a ne adresa)

Forméatovany vstup a vystup (2)

Program pfecte z klavesnice dvé Cisla, vytiskne je v
obraceném poradi a pak vytiskne jejich soucet
#i ncl ude <stdio. h>

int main()

{
int i, j;
scanf("%d", &);
scanf ("%d", &);
printf("%%", j, i);
printf("%l je soucet", i +j);

2002 29

2002

30

Forméatovany vstup a vystup (3)

Formatovany vstup a vystup (4)

Priklady (i= 4, =7):

1. printf("Soucet je %", i + j);
vypiSe: Soucet je 11

2. printf("Pracovali na 100%%);
vypiSe: Pracoval i na 100% nebot pro vypis znaku "%" je
nutné tento znak zdvojit

3. printf("Soucet je %\tSoucin je %\n", i + j,
ERDF
vypiSe: Soucet je 11 Soucin je 28 aodfadkuje

4. printf("\007Chyba, pokus o deleni nulou.\n");
piskne a vypiSe: Chyba, pokus o deleni nulou. a
odradkuje

VZdy je nutné dodrZet stejny po€et parametru (proménnych nebo
vyrazu) jako formatovacich specifikaci (kolik je v fidicim
fetézci znakl "9, tolik musi byt dalSich parametr)

Neékteré formatové specifikace Fidiciho fetézce formétu
uvadéné za znakem "% pouzitelné jak pro scanf () takipro

printf():
c - znak
d - desitkové €islo typu signed int
Id - desitkové ¢islo typu signed long
u - desitkové ¢islo typu unsigned int
lu - desitkové €islo typu unsigned long
- float (pro printf () také double)
Lf - long double (Pozor: L musi byt velké!)
| f - double (Pozor: nékdy nelze pouzit proprintf())
X - hexadecimalni ¢islo malymi pismeny, napf. 1a2c
X - hexadecimalni €islo velkymi pismeny, napf. 1A2C
0 - osmickové &islo
S - Fetézec

2002 31

2002

32

Casté chyby Co je dobré si uvédomit

« main(); za definici funkce se nedéla stfednik ¢ VSechna kli¢ova slova musi byt malymi pismeny.
© printf(Uod”, i) mnoho argumentd « Déleni (/) je operace zavisla na typu operandl — pro cela
° I "ol 06" . A) vz . vz s v VT . s 7 v e

printf (" %%", i) malo argumentu &isla je to celo&iselné délent, jinak je to realné déleni.

- scanf ("9, 1); chybi znak &tedy: scanf (" %", &) Pfifazeni je vyraz a pfikazem se stava az po ukonéeni
* scanf(0"%", &) ; format pro char je % scanf (" %", &c); stfednikerjn y P P

e Pocet vystupnich vyrazti v pri nt f () nebo vstupnich v
scanf () musi pfesné odpovidat poctu formatovych
specifikaci.

* U proménnych ve scanf () je &

2002 33 2002 34

Booleovské vyrazy

V C neni implicitné typ Boolean. Misto néj se pouZziva typ int,
kde nulova hodnota (0) znamena FALSE a nenulova hodnota
(nejcastéji 1, ale neni to podminkou) je TRUE.

Pascal C
M, -, rovnost = ==
Ridici struktury nerovnost - -
logicky soucin AND &&
logicky soucet OR |
negace NOT !

v v

dalSi Ctyfi relacni operatory maji stejnou syntaxi i vyznam
mensi <
mensi nebo rovno <=
vetsi >
vétsi nebo rovno >=

2002 36

Zkracené vyhodnocovani logickych vyrazu

Zajimavou vlastnosti jazyka C je, Ze se logicky soucin a soucet
vyhodnocuji ve zkrdceném vyhodnoceni (short circuit).

To znamend@, Ze argumenty jsou vyhodnocovany zleva doprava
a jakmile je mozno uréit koneény vysledek, vyhodnocovani
okamzité kondi.

Priklad:

C if (y'!'=08&& x/ y < z)
nedojde k déleni nulou

Pascal if ((y <>0) AND (x / y < 2))

muze dojit k déleni nulou

Priority vyhodnocovani vyrazu (1)

Tabulka priorit a zplisobu vyhodnocovani nékterych operatoru:

2002 37

Operator Smeér vyhodnoceni
I+ -- -+ (typ) zprava doleva
* % zleva doprava
+ - Zleva doprava
< <= >= < Zleva doprava
= I= Zleva doprava
&& zleva doprava
I zleva doprava
? Zleva doprava
= 4= -= *= atd. Zleva doprava

, zleva doprava

2002 38

Priority vyhodnocovani vyrazu (2)

V C maji aritmetické operatory a operator porovnani vyssi
prioritu nez logické operatory, takze vyraz:
if (c >"A && c <="'27Z")
je spravny, kdezto stejné napsany pascalovsky vyraz:
if (c >'A ANDc <= '2Z")
je chybny.

Pozor:

Nezaménovat && za & nebo || za |. Operatory & a | pfedstavuji
bitové operace, a pouZzity nespravneé v logickych vyrazech
daji nespravné vysledky.

Blok

2002 39

Syntaxe bloku je velice jednoducha. Blok je uzavien mezi
dvéma sloZzenymi zavorkami. Mezi témito zavorkami mohou byt
libovolné jiné pfikazy véetné dalSich blokd.

Kromé toho mohou byt jeSté na za¢atku bloku, tedy pred
prvnim pfikazem, lokalni deklarace a definice. Proménné (a
dalSi objekty) takto definované jsou pak viditelné pouze uvnitf
bloku a v dalSich vnofenych blocich.

Blok je v C chapan jako jediny pfikaz a proto se také da pouzit
vSude tam, kde je mozné pouzit pfikaz. Blok se také ¢asto
oznacuje pojmem sloZeny prikaz.

{int i;
Del ej Neco(i);
{Del ej Jest eNeco(i);
}

}

2002 40

s

Podminény pfikaz i f

Cyklus whi | e

if (vyrazl) prikazl

je zakladni pfikaz slouZzici k vétveni toku programu. Prvnim krokem pfi
vykonavani pfikazu je vyhodnoceni vyrazul (zdvorky kolem vyrazu nelze
vynechat !). Pokud je hodnota, vznikla jeho vyhodnocenim, nenulova,
provede se prikazl. V opa¢ném pfipadé, kdy je vyrazl vyhodnocen jako
nula, se pfikazl neprovede.

Prikaz if Ize jeSté doplnit 0 nepovinnou &ast el se:
if (vyrazl) prikazl el se prikaz2

Rozdil pfi pouziti el se je v tom, Ze pfi nesplnéni podminky (vyrazl je
vyhodnocen jako 0) se provede prikaz2.

Priklad:

if (a>1) a=1; else b=1;

V pfikazu a=1; (stejné tak v b=1;) je nutné pouzit stfednik, protoze pravé
ten udéla z vyrazu a=1 prikaz.

V C znak stfedniku neplni oddélovaci funkci, jak je tomu napfiklad v
Pascalu, ale je pfimo soucasti prikazu.

Prikaz whi | e realizuje v C cykly s podminkou na zacatku.

whil e (vyrazl) prikazl

funguje tak, Ze se nejprve vyhodnoti vyrazl a pak, je-li
vyhodnocen jako nenulovy, provede se pfikazl. Po jeho
provedeni se znovu vyhodnoti vyrazl a pfipadné se znovu
provede pfikazl. Cyklus koné&i v okamziku, kdy je podminka
vyhodnocena jako 0. Pfikaz1 se pak jiZ neprovede a program
pokracuje dalSim pfikazem po whi | e.

int a=0;
whil e (a<10) a++; //desetkrat se provede inkrenentace a.

2002 41

2002 42

Cyklus do-whi | e

Cyklus for (1)

Podobny cyklu whi | e, ale vyhodnocuje pokraéovaci podminku (vyrazl) az
po provedeni téla cyklu. To znamena, Ze minimalné jednou se télo cyklu
provede vzdy.

do prikazl while (vyrazl)

Nejprve se provede pfikazl a teprve po jeho provedeni je vyhodnocen
vyraz podminky. Pokud je nenulovy, znovu se vykona prikaz1l. To pokraguje
aZ do doby, kdy je podminka vyhodnocena jako nulova.

a=0;

do { printf(“ahoj\n”);

}while (a++ !'= 10)

Na pfedchozim pfikladu je vidét, Ze posledni fadek si Ize, u sloZzitéjSich
programd, snadno splést se zapisem obyc¢ejného cyklu whi | e. Proto se
ukonc&ovaci zavorka bloku ¢asto piSe pred slovo whi | e. Tak programator

naznac¢i sam sobé, ale i dalSim lidem, ktefi budou se zdrojdkem pracovat,
Ze nejde o cyklus whi | e, ale do- whi | e.

2002 43

Cyklus for je vlastné jen trochu rozsifeny pfikaz whi | e, pomoci kterého
muzeme prehlednéji zapisovat itera¢ni cykly. Uz na prvni pohled vypada
pfikaz f or odliSné od stejnych pfikazl v jinych jazycich. | jeho pouziti
muze byt zna¢né odliSné od toho, na jaké jsme zvykli tfeba z Pascalu.
Nicméné hlavni zplsob jeho uplatnéni budou, stejné jako v jinych
jazycich, praveé itera¢ni cykly.

for (inicializaeni_vyraz; term nalni_vyraz; iteracni_vyraz)
pzikazl

pfikaz for je provadén v téchto krocich:

1. Je vyhodnocen inicializacni vyraz.

2. Je vyhodnocen terminalni vyraz. Pokud je vyhodnocen jako 0, je
vykonavani cyklu for ukonéeno a pokraéuje se prvnim pfikazem
uvedenym po cyklu. Pokud je ale vyhodnocen jako nenulovy, pokraéuje
se krokem 3.

3. Je proveden prikaz1.

4. Vyhodnoti se iteraéni vyraz. Pokraéuje se znovu od bodu 2.

2002 44

Cyklus for (2)

Typické pouziti cyklu for:

int i;

for(i=0; i<5; i++) printf("%",i);

/'l 5-krat se provede ptikaz printf, ktery

ti skne hodnotu promznné i.

Jako inicializa¢ni a itera¢ni vyrazy mohou byt pouzity vyrazy
jakéhokoliv typu. Terminalni vyraz by vS8ak mél byt Ciselny.
Je také mozné vynechat libovolny z téchto vyraz(i. Napfiklad
vynechanim inicializaéniho a iteracniho vyrazu vlastné ziskame
jinak zapsany cyklus whi | e.

Vynechanim terminalniho vyrazu pak docilime nekoneéného
cyklu, protoze chybéjici terminalni vyraz bude nahrazen

néjakou nenulovou konstantou a ta, samoziejmé, nemuize byt
nikdy vyhodnocena jako 0.

Cyklus f or (3)

Nasledujici pfiklad demonstruje pouziti cyklu for pro neiteraéni
cyklus.

for (;(a=getch())!=27; putch(a));

Inicializa€ni vyraz je vynechan, ale znak stfedniku je povinny a
tudiz jej vynechat nelze. V terminalnim vyrazu je do proménnée
a nacitan znak z klavesnice a na¢tena hodnota je hned pouzita
pfi porovnani s konstantou 27 (klavesa Escape). Cyklus je tedy
ukoncen stiskem klavesy <Esc>.

Télem cyklu je prazdny pfikaz ;.

Tisk znaku zajiStuje az vyhodnoceni iteraniho vyrazu.

2002 45

2002 46

Pfikaz skoku got o

Pfikaz got o rozhodné nepatfi mezi hojné uzivané prikazy,
tedy alespor ne mezi programatory, ktefi se drzi zasad
strukturovaného programovani.

PouZiti got o se Ize vzdy vyhnout, a proto se pouZziva pouze v
ojedinélych pfipadech, kdy by se program bez jeho pouziti
znacné znepiehlednil.

goto navesti;

navesti: prikaz;

Provedenim pfikazu got o se vykonavani programu presune
na pfikaz, pfed kterym je uveden odpovidajici identifikator
navésti nasledovany dvojte¢kou. Naveésti nemusi byt pfedem
deklarovano, a protozZe pro navésti je vyhrazen vlastni jmenny
prostor, mohou byt jejich identifikatory shodné s identifikatory
obyc€ejnych proménnych

Prikaz br eak

br eak;

Prikaz br eak muze byt pouzit v télech cykli (whi | e, do-

whi | e, for) a v téle pfikazu swi t ch, pfi€emz jeho pouziti
zpUsobi okamzité opusténi cyklu (nebo pfikazu swi t ch). Jde
tedy vlastné o skok na prvni pfikaz za cyklem.

2002 47

2002 48

Prikaz cont i nue

Pfikaz mnohonasobného vétveni —swi tch (1)

conti nue;

Pfikaz cont i nue, na rozdil od br eak, mize byt pouzit pouze
v télech cyklll a zplUsobi okamZité zapoceti dalSiho cyklu.
Stejné jako u pfikazu br eak se mizeme i na cont i nue divat
jako na pfikaz skoku, ale tentokrat se skoci za posledni pfikaz
téla cyklu.
while (1)
{ ¢ = getch();
/1 do c se nacte znak z kl avesni ce
if (c==27) break;
/] pokud je stisknuta kl avesa ESC, je cyklus ukoncen
if ('isalpha(c)) continue

/1 neni-li znak pisnmeno, zacne se provad&t znovu té&lo cyklu,
/1 takZe uZ nedojde na..
putch (c); // ...vytisténi znaku
}
2002 49

Pokud potfebujeme tok programu veétvit do vice jak dvou smeérd,
muzeme misto nékolika do sebe vnorenych pfikazui f - el se vyuZit
moznosti, které ndm v C poskytuje pfikaz swi t ch.

switch (vyrazl)

{

case konstantni_vyraz: p#ikazy
case konstantni_vyraz: pzikazy

defaul t: pzikazy
}

pfi provadéni pfikazu swi t ch je nejdfive vyhodnocen vyrazl a pak se
postupné vyhodnocuji konstantni_vyrazy v navéstich case. V pfipadé,
Ze je nalezeno navésti, kde je konstantni_vyraz roven hodnoté vyrazul,
zacnou se provadét vSechny prikazy uvedené za timto navéstim az do
konce prikazu swi t ch. To ale znamena, Ze se provedou i vSechny
piikazy v nasledujicich vétvich. Pokud tedy chceme, aby se provedia
vzdy jen jedna vétev, Ize vykonavani pfikazu swi t ch okamzité zastavit
uvedenim pfikazu br eak. (Obdoba Pascalovského pfikazu case).

2002 50

Pfikaz mnohonasobného vétveni —swi tch (2)

Podminény vyraz - operator "?"

Pokud neni nalezena Zadna vyhovuijici vétev, sko€i se na
navésti default (pokud je pouzito), které maze byt uvedeno
kdekoliv v téle pfikazu swi t ch.

int c;

switch (c)
{
case 1:
case 2:
case 3: printf ("Gslo 1, 2, nebo 3"); break;
case 4: printf ("Gslo 4"); break;
default: printf ("Jine cislo, nez 1,2,3 nebo 4"); break;

Vedle podminéného piikazu i f - el se existuji v C jesté dalSi zplsoby, jak
if-podminky zapsat. Jednim z nich je pouziti operatoru "?", ktery je
mimochodem jediny operator v C majici tfi operandy. Proto se pro néj ¢asto
pouZivi nazev ternérni operator.

vyrazl ? vyraz2 : vyraz3

Vyhodnoceni vyrazu s ternarnim operatorem probiha takto:

Nejdfive je vyhodnocen vyrazl, ktery by mél byt ¢iselného typu. Je-li jeho
hodnota uréena jako nenulova, je nasledné vyhodnocen vyraz2 a jeho
hodnota je zaroven vyslednou hodnotou celého vyrazu. Vyraz3 se vibec
nevyhodnoti a tudiZz se neprovedou ani pfipadné postranni efekty. V
pfipadé, Ze je vyrazl vyhodnocen jako nula, je naopak vyhodnocen vyraz3
a jeho hodnota je také vysledkem celé operace.

Na rozdil od pfikazu if-else, pouZiti operatoru "?" tvofi vyraz a z toho také
vyplyvaji odliSné moznosti jeho pouZziti.

i = a>b?a:b;

/1 promenné i se priradi vzdy vétSi z c¢isel aab

2002 51

2002 52

Operéator postupného vyhodnocovani ", "

vyrazl , vyraz2

Operator ,¢arka“ je jeden z mala operator(, ktery zajistuje
poradi vyhodnoceni svych operand(. Nejdfive je vyhodnocen
levy operand, tedy vyrazl, jehoz hodnota je ovSem
zapomenuta, a ktery slouZi pfedevsim k vykonani postrannich
efektd. Jako druhy je pak vyhodnocen vyraz2, jehoz hodnota je
pak i vyslednou hodnotou celého vyrazu.

Operator ¢arky se €asto pouziva napfiklad v fidicich ¢astech
prikazll for a while, kde jeho pouziti mize vést ke zjednoduSeni
zapisu, nebo kde slouzi jako prostfedek k vykonani dalSich
postrannich efektd.

for (i=0, j=9; i<10; i++, j--) printf("% %\n", i, j);
/1inkrementace i a dekrenentace |j

Zkracené vyhodnocovani logickych operatoru

2002 53

PFi vyhodnocovani vyrazu s logickymi operatory && nebo | |
¢asto staci k uréeni vysledné hodnoty vyhodnotit pouze jeden z
operandul.

Napfiklad u vyrazu s operatorem logického soucinu &&, kdy je
prvni operand vyhodnocen jako nulovy, nemuize jiz
vyhodnoceni druhého operandu nijak ovlivnit celkovy vysledek,
ktery bude také nulovy.

V C se v takovém pfipadé skute¢né pravy operand
nevyhodnocuje a tato skute¢nost tedy mize byt vyuzita jako
dalSi zplsob podminéného vyhodnocovani.

i <0 && (i =0);

1(i<0) || (i=0);

Oba priklady maiji stejny efekt: Je-li hodnota proménné i mensi
nez 0, bude tato hodnota nastavena na O.

2002 54

Funkce (1)

Funkce jsou nepostradatelné soucasti vSech strukturovanych jazyka, a tedy
i jazyka C.

Definice funkce

navratovy_typ identifikéator_funkce (seznam defi nici
formal nich paranetrua)

{ 1 okal ni dekl arace a definice;

pri kazy;
}
Definice funkce zacina tzv. hlavickou funkce, coz je v naSem vzorovém
pfikladu prvni Fadek. Navratovy typ uréuje jakého typu bude hodnota,
kterou bude funkce vracet. Jako dalSi po identifikatoru typu piSeme
identifikator funkce nasledovany seznamem definici formalnich parametrd.
Form@lni parametry jsou pak proménné nadefinované v tomto seznamu. Ty
se definuji stejné jako normalni proménné, jen s tim rozdilem, Ze nelze
zkratit zapis vice proménnych stejného typu oddélenim jednotlivych
identifikatord ¢arkou, jak ukazuje nasledujici priklad:

int secti (int a,b) /I nel ze

int secti (int a, int b) /I spravny zapis

Funkce (2)

Po uvedeni hlavi¢ky funkce jesté nasleduje télo funkce, které je tvofeno
blokem. Jak uz vime, na za¢atku bloku mohou byt uvedeny lokalni
deklarace a definice, po kterych nasleduji pfikazy. Ty obvykle pracuji s
pfedanymi parametry. Provadéni funkce je ukonéeno po vykonani
posledniho pfikazu téla funkce, ale v takovém pfipadé neni mozné
odhadnout, jakou hodnotu funkce vrati. Proto se pouziva pfikaz r et ur n
return vyrazl;

Tento piikaz zpUsobi okamzité opusténi funkce, ve které je pouzit. Hodnota
nepovinného vyrazul je pak navratovou hodnotou funkce. Pokud vyrazl
neuvedeme, bude navratova hodnota pfedem neurcitelna. Pak bychom ale
nemeéli tuto hodnotu nikde pouzivat.

int secti (int a, int b)

{return a+b;}

V pfikladu je nadefinovana funkce, které vraci soucet dvou c&isel. Typ jeji
navratové hodnoty je uréen jako i nt, stejné jako typy obou parametr(i
funkce. Po pfedani fizeni funkci se hned zaéne vykonavat pfikaz r et ur n,
ktery funkci ihned ukonéi a jako vysledek po jejim volani vrati soucet hodnot
pfedanych parametrd.

2002 55

2002 56

Funkce (3)

Funkce (4)

Deklarace funkce

Deklarace funkce je vlastné zplsob jak dat prekladaci vSechny potifebné
udaje o funkci, aniz bychom ji museli celou definovat. Predtim, nez funkci
zavolame, méla by byt vzdy pfedem definovana, nebo deklarovana. To
proto, aby pfeklada¢ znal vSechny formalni parametry, a tak mohl vytvofit
spravny kéd. Pokud funkci nebudeme jesté pred jejim volanim deklarovat
ani definovat, bude preklada¢ odhadovat formalni parametry podle typu
skute¢nych parametrll (parametry pfedané funkci pfi jejim volani), které ale
nemusi odpovidat typu parametrl formalnich. Vysledkem by pak byl
nespravné sestaveny kéd. Pokud ale z néjakého dlvodu neni funkce
definovana pfed svym pouzitim, méla by byt alespor deklarovana.
Deklarace funkce vypada takhle:

navratovy_ typ identifikéator_funkce (seznam defi nici
formal nich paranetru);

Je to vlastné cela hlavi¢ka definice, ktera je ale zakon¢ena stfednikem.

int secti (int a, int b); // deklarace vySe defi nované
funkce.

2002 57

Volani funkce
identifikator_funkce (seznam paranetr)

Jednotlivé vyrazy v seznamu parametrll jsou oddéleny ¢arkou. Samotné
parametry jsou pak vyrazy, které jsou pfed pfedanim fizeni funkci
vyhodnoceny a jejich vysledné hodnoty jsou funkci pfedany. | kdyz funkce
nema zadné skute€¢né parametry, zavorky je nutné uvést vzdy. Pocet
skute¢nych parametrll musi byt vZzdy stejny nebo vétsi nez poCet parametr(
formalnich.

Samotné volani funkce je chapano jako vyraz a to uréuje i misto jeho pouziti
(napf. operand nékterého operatoru, ve vyrazovém pfikazu, jako skute¢ny
parametr jiné funkce).

Formalni parametry jsou vlastné lokalni proménné, a tedy existuji pouze po
dobu vykonavani funkce a jsou viditelné pouze z téla funkce. Kdyz
vykonavani funkce skon¢i, je pamét vyhrazena pro tyto proménné uvolnéna
a jako vysledek volani funkce se pouZije jeji navratova hodnota (vétSinou
tedy hodnota vyrazu za pfikazem r et ur n).

a = secti(3,5); //do promznné a se ulozi vysledek po

vol ani funkce secti (3,5)

2002 58

Preprocesor jazyka C

Direktiva #i ncl ude

Jistou zvlastnosti jazyka C je jeho preprocesor. Ten jesté pied
samotnym pfekladem zdrojovy soubor upravi a teprve
upraveny soubor je predan prekladaci. Mezi Upravy, které
preprocesor provadi se fadi pfedevsim substituce textu,
odstrafiovani komentar(a podminény preklad.

Cinnost preprocesoru fidime pomoci tzv. direktiv preprocesoru.

KaZzda direktiva je uvozena znakem #, ktery musi byt uveden
hned jako prvni znak na radku.

Tak uréime, Ze zbytek fadku je uréen preprocesoru a zapisy
v ném se tedy fidi jeho syntaktickymi pravidly, ktera nejsou
totoZna s témi céckovskymi.

2002 59

#i ncl ude <soubor > nebo #i ncl ude "soubor"

Pokud preprocesor narazi na vyskyt direktivy #i ncl ude,
nahradi ji obsahem uréeného souboru. To se nejéastéji
pouziva pro vkladani tzv. hlaviékovych soubord s
deklaracemi funkci apod., nebo pfimo jinych zdrojovych
soubort C. Jak jste si jisté vSimli, je mozné v zapisu
direktivy ohranicit jméno souboru bud lomenymi zavorkami,
nebo uvozovkami. Pokud pouZijete zapisu se zavorkami a
nespecifikujete Uplnou cestu k souboru, bude soubor hledan
ve standardnim adresafi pro ukladani hlavi¢kovych soubor(.
PouZijete-li zapis s uvozovkami, bude soubor hledan
nejdfive v adresafi se zdrojovym souborem a pak teprve v
adresafi s hlavickovymi soubory.

2002 60

Direktiva #def i ne

#define identifikéator_nmakra text _makra
Tato direktiva se pouziva pro vytvareni tzv. maker.

Makra se €asto pouZzivaji pro definovani tzv. symbolickych konstant, kdy
misto konstanty pouzivdme né&jaké symbolické jméno. Jesté pred
pfekladem tak budou vSechny vyskyty tohoto symbolického jména
nahrazeny skute€nou hodnotou.

#define Pl 3.141592653

Predpokladejme, Ze mame ve svém zdrojaku nadefinovana makro z
predchoziho pfikladu a Ze tam mame také nasledujici radky:

doubl e c;

printf ("Cslo Pl ");

c = PI;

Po zpracovéani preprocesorem bude pfedchozi zapis vypadat takto:

doubl e c;

printf ("Cslo Pl ");

c = 3.141592653;

V parametru funkce pri nt f nebylo nahrazeni textem makra provedeno,
protoZe v fetézcich se nahrazovani neprovadi.

Pole (1)

2002

61

Definice proménné typu pole

* Proménna typu pole se definuje podobné jako promé&nna
jednoduchého typu. Rozdilem je, Ze pfi definici pole se za
jménem identifikatoru proménné jesté uvadéji hranaté
zavorky, ve kterych uréime podcet prvki pole.

bazovy typ identifikéator[pocet prvkt];

« BA&zovy typ neurduje typ proménné, ale typ poloZek pole. Ze
jde o pole pozna prekladac pravé podle hranatych zavorek.
Pocet_prvk(je jakykoliv konstantni vyraz, tedy takovy, ktery
Ize vyhodnotit jiz pfi pfekladu.

short int noje_pol e[10];

» Nadefinovali jsme proménnou typu pole, ktera obsahuje 10
poloZek typu short int. Znamena to tedy, Ze se pro nasi
proménnou vyhradilo 20 bytl (10 * sizeof(short int)).

2002 62

Pole (2)

Prvky pole Ize inicializovat jiz pfi definici. Staci za posledni hranatou
zavorku uvést znak ‘=’ nasledovany seznamem inicializa¢nich vyraz(,
jak ukazuje nasledujici priklad:

short int noje_pole[5]={1, 0, 443, -46, 987};

Inicializaéni vyrazy se pfifazuji postupné, tak jak jsou zapsany. Pole
moje_pole bude napInéno hodnotami takto:

index: 0 1 2 3 4

pole: | 1 | 0 I 443 I -46 | 987 |

« V pfipadé, Ze pocet inicializa¢nich vyrazll je vy$Si neZ pocet polozek
pole, bude se pfi prfekladu hlasit chyba. Pokud je pocet inicializatord

mensi, chyba se nehlési a zbylé polozky jsou inicializovany bud nulovou

hodnotou, nebo nejsou inicializovany viibec.

« Pokud pfi definici zaroven inicializujeme prvky pole, nemusime specifikovat
velikost pole, ale staci kdyZ uvedeme prazdné zavorky. Preklada¢ sam urc&i
velikost pole podle poétu inicializaénich vyrazu.

short int noje_pole[]={1, 0, 443, -46, 987};

Pole (3)

2002

63

e Vjazyce C jsou vSechny proménné typu pole indexovany od nuly. To
znamena, Ze prvni polozka ma vzdy index 0, coZ neni mozné nijak
ovlivnit. Budeme-li tedy chtit ziskat prvni poloZku pole, pouzijeme zapis:

noj e_pol e[0]

« Je dulezité si uvédomit, Zze indexaci neziskAvame pouze hodnotu prvku
pole, ale pfimo prvek samotny, tedy I-hodnotu. Je tedy mozné pouzit
tento z4pis i na levé strané pfifazovaciho vyrazu:

int noje_pole[d];

noj e_pol e[0] =250;

Timto zapisem jsme do prvni polozky pole zapsali hodnotu 250.

Prochéazeni pole

» Pri proch&zeni poloZek pole je nutné dat si pozor na to, abychom nikdy
omylem neprekrodili hranice pole. Jazyk C totiz zasadné nekontroluje
meze poli, a tak je bez problém{ moZné &ist i zapisovat do paméti, ktera
nam jiz nepatfi. To v nejhorSim pfipadé miZze vést az ke zhrouceni
programu, nebo celého pocitace. Posledni prvek pole o n poloZkach tedy
bude mit index n-1.

2002 64

Retézce (1)

Retézce (2)

Jazyk C nema implementovany specialni datovy typ pro
fetézce. Ty jsou proto v C reprezentovany jako pole prvkl typu
char, kde je v kazdém prvku ulozena ascii hodnota
pfislusného znaku fetézce. Jako posledni musi byt vzdy
uveden znak EOS (end of string), cozZ je znak s ascii
hodnotou 0. Ten oznacuje konec fetézce.

Z toho, jak jsou fetézce ukladany, je jasné, Ze velikost fetézce
je omezena jediné velikosti paméti, kterou pro néj Ize alokovat.

2002 65

Inicializace retézce pfi definici

Ret&zce se definuji stejné jako pole. Pouze je tfeba dat si
pozor na to, abychom pfi definovani velikosti nezapomnéli na
znak EOS. | pole prvki char Ize samoziejmé inicializovat pfi
definici, a to stejnym zplsobem jako obycejna pole, tedy
vyétem jednotlivych prvku:

char string[]={"p' ,'0 ,"'1","e ,"\0},;

Jednotlivé znakové konstanty pfedstavuji ascii hodnoty, které
jsou do pole st ri ng ulozeny. Jako posledni znak pak
nesmime zapomenout vlozit znak EOS. Tento zplsob
inicializace ale neni zrovna moc pohodiny, a tak je mozné pfi
definici inicializovat pfimo fetézcovou konstantou:

char string[]="pol e";

Tento zapis je zcela ekvivalentni s pfedchozim. Pro pole string

je vyhrazeno 5 bytd, do kterych je ulozen fetézec ,pole” véetné
znaku EOS.

2002 66

Kopirovani fetézcu

Spojovani retézc

char *strcpy(char cil[], char zdroj[])

Pro kopirovani jednoho fetézce do druhého je v C pfipravena
funkce st r cpy, ktera ma dva argumenty, fetézce cil a zdroj.

Bez ohledu na obsah a velikost fetézce cil je do ného postupné,
znak po znaku, kopirovan obsah fetézce zdroj, a to az do doby
kdy se narazi na znak EOS. Tento znak je poslednim
zkopirovanym znakem. Pfi pouZzivani funkce st r cpy je nutné
zajistit, aby pole cil mélo vzdy dostate¢nou velikost na to, aby
se do néj fetézec zdroj veSel. To ale plati i pro vétSinu

ostatnich funkci pracujicich s fetézci. Navratovou hodnotou
funkce st r cpy je ukazatel na fetézec cil, ale protoze o
souvislosti poli s ukazateli si povime az nékdy jindy, mGzeme
prozatim tuto informaci pominout.

Ke spojovani rfetézcl mizZeme pouZzit funkci strcat:

char * strcat (char cil[], char zdroj[])

Tato funkce jednoduse pfipoji fetézec zdroj za fetézec cil.
Stejné jako u funkce st r cpy, aniu str cat se neberou ohledy
na skute¢nou velikost paméti alokované pro pole cil. To musi
byt dostatecné velké, aby pojalo oba fetézce cil a zdroji se
znakem EOS.

2002 67

2002 68

Zjistovani delky retézce

int strlen(char str[])

Pro zjisténi délky fetézce nam jazyk C nabizi funkci strl en,
ktera jako svou navratovou hodnotu vraci délku fetézce, ktery ji
byl pfedan parametrem.

Porovnavani dvou retézcu

2002 69

int strcnp (char strl[], char str2[])

Funkce st r cnp porovnava fetézce strl a str2 a vraci zapornou hodnotu v
pfipadé, Ze fetézec s1 je lexikograficky mensi nez fetézec s2 a kladné ¢&islo
v pfipadé, ze s1 je vétSi nez s2. Jsou-li oba fetézce stejné, je funkci
vracena hodnota O.

Priklad:

char sl1l[]="retezec";

char s2[]="pole";

char s3[20];

strcpy(s3,sl); /1 zkopiruje s1 do s3
strcat(s3, "a"); /] pripoji ret&zec "a" k s3
strcat (s3, s2); [l pripoji ret&zec s2 k s3

[l v promenné s3 je ted ul oZen

/] reté&zec "retezec a pole";
printf("%",strlen(s3)); // vypiSe dél ku ret&zce s3,

/] ¢cislo 14

2002 70

Vicerozmeérna pole (1)

Vicerozmérna pole se definuji podobné jako jednorozmérna.
Staci pouze pfipojit dalSi dvojici hranatych zavorek, ktera poli
pfida novou dimenzi.

int a[10]; definice jednorozmérného pole o deseti prvcich
int b[10][5]; definice dvourozmérného pole 10x5

Zapis definice proménné a preéteme obvyklym zplsobem: “a
je pole desiti prvki, jejichZ typ je int.”

Cteni druhé definice bude o trochu sloZit&jsi. Jak uZ bylo
feceno, lze se na vicerozmérna pole divat jako na pole prvki,
kde tyto prvky jsou jina pole.

Z4pis druhé definice tedy preéteme takto: “b je pole desiti
prvkd, jejichz typ je pole péti prvkl typu int.”

Vicerozmeérna pole (2)

PFistup k prvkam pole

Stejné jako pfi definici, i pfi indexaci pole staci pridat dalsi
index (ve vlastnich hranatych zavorkach).

Vratme se znovu k nasledujici definici:

int b[10][5];

Opét vyuzijeme zplisobu nazirani jako na jednorozmérné pole.
Pouzitim jednoho indexu ziskame néktery prvek pole b.
Napfiklad zapisem b[6] ziskame sedmy prvek pole b.

Tento prvek je ale sam péti-prvkové pole.

DalSi indexaci se tedy pohybujeme mezi prvky tohoto pole.
Napfiklad b[6] [3] .

2002 71

2002 72

Vicerozmeérna pole (3)

Vicerozmeérna pole (4)

Ukazeme si to na pfikladu, ve kterém si vytvofime pole
reprezentujici nasledujici matici:

1 2 3 b[O], [O] b[O0],[1] b[O],[2]
4 5 6 b[1], [0] b[1],[1] b[1],[2]
7 8 9 b[2], [0] b[2],[1] b[2],[2]
10 11 12 b[3],[0] b[3],[1] b[3],[2]

Nejprve vytvofime nové neinicializované pole 4x3:
int b[4][3];
Pomoci prvniho indexu tedy budeme vybirat fadek a druhym
se budeme pohybovat po prvcich tohoto fadku. Ted mizeme
pole naplnit pfisluSnymi hodnotami:
int i,j, k=1;
for (i=0; i<4; i++)
for (j=0; j<3; j++, k++) b[i][]j]=k;

Inicializace pfi definici

| vicerozmérna pole se daji inicializovat jiZ pfi definici, a to
stejné jako pole jednorozmérna.

Opét si ale musime uvédomit, Ze jednotlivymi prvky pole jsou
jiné pole, a tak jako inicializatory musime uvadét dalSi seznamy
inicializaénich vyraz(.

int a[2][3]={{22,1,16},{112,0, 4}};

int b[3][2]={{22,1},{16,112},{0, 4};

Pole a a b z vySe uvedenych definic pak budou vypadat takto:

Pole a Pole b
22 1 16 22 1
112 O 4 16 112
0 4

2002 73

2002 74

Vstup ze souboru a vystup do souboru

Vstup ze souboru a vystup do souboru (2)

Z hardwarového hlediska je kazdy soubor posloupnost bajttl
uloZenych na néjakém meédiu (nej¢astéji disku) v nékolika
blocich. Jak se s bloky pracuje je zalezitost opera¢niho
systému a nas to nemusi zajimat. Pfistup k souboru je
mozny sekvenéné, tak i nahodné.

Z&kladni datovy typ pro praci se souborem v jazyce C:

FI LE * - coz je pointer na objekt typu FI LE

(zatim nevime co to znamena, viz pozdéji)
Definice proménné f pro praci se souborem
FILE *f;
« Identifikator FI LE musi byt velkymi pismeny
» Proménnaf se déa pouzit jak pro &teni, tak i pro zapis do souboru

» Chceme-li definovat vice proménnych, €ili pracovat s vice
soubory najednou (napf. pro ¢teni a zapis), musi se znak *
opakovat,tj. FILE *fr, *fw;

Otevieni souboru pro €éteni
Soubor POKUS bude mozné jen &ist.

f = fopen("Pokus", "r") "r"jako read

Otevreni souboru pro zapis
Do souboru POKUS bude moZné jen zapisovat

f = fopen("Pokus", "wW') "w"jako write

Pozn.:

 Existuji i dalSi rezimy otevieni souboru (kromé "r" a "w"

» Nekteré kompilatory rozliSuji rezimy otevieni pro textovy
nebo binarni soubor. V dalSim pfedpokladame textovy rezim

* Obecné plati, Ze "w" nebo "r" bez dalSiho pismene znamena
otevieni souboru v textovém rezimu.

2002 75

2002 76

Z&akladni operace s otevienym souborem

Ukoné€eni prace se souborem

Funkce ze standardni knihovny popsané ve st di o. h, které umoziu;ji

pracovat se souborem:
(Proménnaf je typu FI LE*).

Cteni znaku ze souboru c = getc(f)

Zapis znaku do souboru putc(c, f)

Formatované ¢teni ze souboru fscanf(f, "forméat", argunenty)

Formatovany zapis do souboru fprintf(f, "format", argumenty)
Pozor.:

U funkce put c() je prvni parametr zapisovany znak a druhy soubor. To
se Casto plete s funkci f pri nt f (), kde je to obracené)
Pro osvézeni paméti a také jako ukazku, zZe se prace se soubory pfilis nelisi
od préce s obrazovkou a klavesnici, je uveden i pfehled korespondujicich
(jiz zndmych) funkci

Cteni znaku z klavesnice c = getchar ()

Zapis znaku na obrazovku put char (c)

Formétované &teni z klavesnice scanf ("format", ar gunenty)
Formétovany zapis na obrazovku printf("format", argunenty)

Po skonc&eni prace se souborem (uz z ného nebudeme dale
¢ist nebo do ného nebudeme dale zapisovat) je nutné tuto
skute€nost opera¢nimu systému sdélit. Tato akce se jmenuje
uzavfeni souboru a provadi se pomoci funkce

fclose(f),kdef jetypuFILE *.

2002 7

2002 78

Priklady zakladni prace se soubory (1)

Priklady zakladni prace se soubory (2)

Program vytvofi soubor POKUS. TXT a zapiSe do ného €isla od
1 do 10, kazdé na novy radek.

#i ncl ude <stdi o. h>

mai n()

{
FILE *fw
int i;
fw = fopen("POKUS. TXT", "W');
for (i =1; i <=10; i++)

fprintf(fw, "% \n", i);

fclose(fw;

}

2002 79

Program pfecte tfi double Cisla ze souboru DATA. TXT a
vypiSe na obrazovku jejich soucet.

#i ncl ude <stdi o. h>

mai n()

{
FILE *fr;
double x, vy, z;

fr = fopen("DATA TXT", "r");
fscanf(fr, "%f %f %Uf", &, &y, &z);
printf("%\n", x +y + z);

fclose(fr);

2002 80

Priklady zakladni prace se soubory (3)

Parametry funkce mai n (1)

Program precte dva znaky ze souboru ZNAKY. TXT a zapiSe je
do souboru KOPI E. TXT.

#i ncl ude <stdio. h>

mai n()

{
FILE *fr, *fw
int c;
fr fopen(" ZNAKY. TXT", "r");

fopen("KOPI E. TXT", "wW');

fw

c = getc(fr); /* cteni prvniho znaku */

putc(c, fw; /* zapi s prvniho znaku */
putc(getc(fr), fw; /* cteni a zapis druheho znaku */

fclose(fr);
fclose(fw);

2002 81

Jak uz vime, funkce mai n méa mezi ostatnimi funkcemi v C vysadni
postaveni, nebot, kromé toho Ze musi byt vzdy definovana, je automaticky
spousténa ihned po startu programu.

Parametry funkce main se v C vyuZzivaji pro ziskani argumentu, které byly
naSemu programu piedany pfi jeho spusténi. Da se Fict, Ze pokud program
reaguje na jemu predané parametry, je to obecné velmi uzite¢na vlastnost.
Ne vZdy je totiz interakce programu s uzivatelem vitana, nebot mnohé ukoly
Ize zpracovavat davkove, a tedy mnohem rychleji. Chceme-li tedy v naSich
programech vyuZzit moznost prace s parametry pfikazové radky, definujeme
hlavi¢ku funkce main typicky takto:

int main(int argc, char *argv[])

Prvnim parametrem je zde proménna ar gc, kterd v sobé nese informaci o
poctu parametrl. Druhy parametr ar gv pak predstavuje pole fetézc(, ve
kterych jsou tyto jednotlivé parametry uloZeny. Formalni parametry funkce
mai n se z historickych ddvodd pojmenovavaji vzdy prave jako ar gc a argv.
Kromé samotnych parametrl je v poli ar gv, jako jeho nulta poloZzka, ulozen
i Fetézec se jménem spousténého programu. Hodnota parametru ar gc
uvaZzuje i tento fetézec, a tak, pokud programu pfedame napfiklad tfi
parametry, bude mit argc hodnotu 4.

2002 82

Parametry funkce mai n (2)

Parametry funkce mai n (3)

Uvazujme, ze mame funkci mai n nadefinovanou vyse
uvedenym zplsobem, a preloZzeny program spustime s dvéma
parametry napfiklad takto:

program exe prl pr2

Pak bude v proménné ar gc uloZzena hodnota 3 a prvni tfi
polozZky pole budou obsahovat tyto fetézce:

argv[0] = "program exe,
argv[1] = "pr1"
argv[2] = "pr2"

2002

83

Jako pfiklad si vyzkouSime jednoduchy program, ktery nacte
jemu pfedané parametry a spolu s udajem o jejich poctu je
vypise.
int main(int argc, char *argv[])
{

int i;

printf("Pocet paranmetru: %\ n", argc);
for (i=0; i<argc; i++)
printf("argv[i%] == \"%\"\n", i,argv[i]);
return O;

}

2002 84

Zaveér a doporucéena literatura

Text této pfednasky rozhodné neni u€ebnici programovani v jazyku C,
protoZe neobsahuje kompletni popis jazyka C

Zameérem bylo pouze ukazat nékteré moznosti pro prvni kroky pfi vyuce
tohoto jazyka

Pro blizsi studium se doporucuji nasledujici publikace:

SCHILDT, H: Nauc¢ se sam C, Softpress, Praha, 2001. ISBN 80-86497-
16-X

ECKEL, B. Myslime v jazyku C++. Praha: Grada Publishing, 2002. ISBN
8-0247-9009-2

VIRIUS, M. Programovaci jazyky C/C++. Praha: Gcomp, 1992. ISBN 8-
0901-0735-4.

HEROUT, P. Uéebnice jazyka C. Ceské Budé&jovice: Kopp, 1992. ISBN
8-0858-2821-9

HEROUT, P. Uéebnice jazyka C, 2.dil. C. Budé&jovice: Kopp, 1992. ISBN
80-85828-50-2

Internet:
— Napf. www.builder.cz

2002

85

		aub@wo.cz
	2002-11-23T19:44:19+0100
	Brno
	Vladimir Aubrecht
	I am the author of this document

