
První začátky s C

2002 2

Struktura programu a základní prvky

Jazyk C/C++ , co se týče struktury souboru, je daleko volnější
oproti jiným programovacím jazykům. V podstatě je jedno, kde
deklarujete proměnnou nebo nový typ. V souboru se rozlišují
pouze určité bloky a platnost proměnné začíná od místa
deklarace a končí koncem bloku, v němž je deklarovaná.
{ // Začátek nějakého bloku

příkaz1;

příkaz2;

...

příkazn;

} // Konec nějakého bloku

Každý příkaz je ukončen středníkem. Na jednom řádku může
být za sebou i několik příkazů, všechny však musí být odděleny
středníkem (příkaz1; příkaz2; příkaz3).

2002 3

Základní termíny (1)

• Klíčová slova
jsou jednoduše řečeno příkazy jazyka, které jsou přesně
dány, nedají se předefinovat.
Např. for, while, if atd…

• Konstanty
dělí se na numerické, znakové a textové (literály),
nenumerické, ... Je to obdoba proměnných, které mají
ovšem po nadefinování neměnnou hodnotu.

• Operátory
zajišťují provedení určité akce nad určitými operandy.
Příkladem operátoru je operátor pro sečtení dvou
operandů (+).

• Identifikátory
jsou to označení patřící různým proměnným, typům,
funkcím, objektům atd… daného programu. Musí
začínat písmenem a další znaky mohou být čísla nebo
písmena.

2002 4

Základní termíny (2)

• Návěští
určitý bod v programu, na který je "odskakováno" po
zavolání příkazu skoku (goto). Jsou zde zařazena
především z historického hlediska. V klasických
metodách strukturovaného programovaní se používají
velice zřídka.

• Komentář
text, který můžeme vložit do programu. Nemá žádný vliv
na běh programu. Je určen k zlepšení čitelnosti
zdrojového textu a tak k rychlejší orientaci. Komentář je
uvozen buď znaky // (dvě lomítka) nebo /* (lomítko a
hned za ním hvězdička). Komentář uvozený // má
platnost od uvedení lomítek až do konce řádku,
komentář /* má platnost od tohoto začátku až do místa,
kde jsou znaky */ (hvězdička a lomítko), které identifikují
konec komentáře. Textu v komentářích si překladač
vůbec nevšímá. A před vlastním spuštěním programu
provede jeho odstranění (preprocesor).

2002 5

Jednoduché datové typy a přiřazení (1)

C poskytuje podobné datové typy jako Pascal:

Pascal C
INTEGER int

long int též long
short int též short

CHAR char

REAL float

double

long double

2002 6

Jednoduché datové typy a přiřazení (2)

• Typy int, long int, short int a char mohou být

– signed, implicitní pro int, long int, short int, (pro char záleží na
implementaci)

– unsigned, (unsigned int se často zkracuje jen na unsigned)

– Rozsah signed (znaménkový) a unsigned (neznaménkový) čísel:
• Proměnné typu unsigned mají rozsah od 0 do 2n-1, kde n je počet bitů

proměnné. (Unsigned typ nemůže zobrazit záporné číslo)

• rozsah signed proměnných je od -2n-1 do +2n-1 - 1 (poloviční rozsah
typu unsigned).

– Příklad pro typ char, který je vždy 1 Byte (8 bitů) dlouhý:
» unsigned char 0 až 255
» signed char -128 až +127

• C neposkytuje přímo typ Boolean. Booleovské hodnoty jsou
reprezentovány pomocí celočíselných (int) hodnot, kde:

– nulová hodnota (0) FALSE
– nenulová hodnota (nejčastěji 1) TRUE

• Typ double má přesnost asi na 20 desetinných míst

2002 7

Definice proměnných

Definice je příkaz, který přidělí proměnné určitého typu jméno a paměť

Deklarace je příkaz, který pouze udává typ proměnné a její jméno
(nepřiděluje paměť!)

V C jsou definice v obráceném pořadí než v Pascalu:

Pascal C
Var i : INTEGER; int i;

c,ch : CHAR; char c,ch;

f,g : REAL; float f,g;

Pozn:
Definice proměnné vně funkce (globální proměnná) nebo uvnitř funkce (lokální

proměnná)
int i; /* globální proměnná */

int main()

{

int j; /* lokální proměnná */

}

2002 8

Identifikátory

Jazyk C je case sensitive jazyk (rozlišuje malá a velká
písmena).
prom Prom PROM jsou tři různé identifikátory!

Klíčová slova C (např. if, while, register, …) musí být psána malými
písmeny. Jsou-li zapsána velkými nebo kombinací malých a velkých
písmen, berou se jako identifikátory.

C dovoluje u identifikátorů používat znak podtržítko "_":
_prom nepoužívat, znamená to systémový identifikátor
prom_ používat často, zpřehledňuje text
prom_ nepoužívat, na konci se často přehlédne

Délka identifikátoru není omezena, ale ANSI C rozeznává
obecně pouze prvních 31 znaků (32. další jsou bezvýznamné)

2002 9

Často se pracuje s pojmem l-hodnota (l-value). L-hodnota představuje
adresu, tedy např. proměnná (x) je l-hodnotou, ale konstanta (123) nebo
výraz (x+3) l-hodnotou nejsou.
L-hodnota je to, co může být na levé straně přiřazení.

Příklad - různé typy přiřazovacích příkazů:

Pascal C
j := 5; j = 5;

d := 'z'; d = 'z';

f := f + 3.14 * i; f = f + 3.14 * i;

Protože přiřazení je výraz, je možné několikanásobné přiřazení:
k = j = i = 2;
které se vyhodnocuje zprava doleva tedy: k = (j = (i = 2));

Přiřazení

j=i*2+3;l-hodnota=výraz;statementpříkaz

j=i*2+3l-hodnota=výrazassignmentpřiřazení

i*2+3výrazexpressionvýraz

praktickysymbolickyanglickyčesky

2002 10

Hlavní program (1)

Hlavní program v C se jmenuje vždy main a musí být v programu uveden -
je to první funkce volaná po spuštění programu.

Pascal C
PROGRAM POKUS(INPUT, OUTPUT); int main() bez středníku!

Funkce main je normální funkce v C, odlišuje se od ostatních pouze tím, že
je vyvolána na začátku programu jako první

Pascal C
PROGRAM POKUS(INPUT, OUTPUT); int main() /* bez středníku! */

VAR {
i, j : INTEGER; int i, j;

BEGIN

i := 5; i = 5;
j := -1; j = -1;
j := j + 2 * i; j = j + 2 * i;

END. }

2002 11

Hlavní program (2)

• Pascalovské BEGIN a END je v C nahrazeno znaky "{" a "}"
• Závorky "{ }" neuzavírají pouze složený příkaz, ale i blok
• Bezprostředně za každou "{" mohou být definice

• Na rozdíl od Pascalu, umožňuje C inicializaci proměnných přímo v definici, takže
předchozí příklad bude také správně když:
int main()

{

int i = 5,

j = 6;

j = j + 2 * i;

}

Složený příkaz
pouze seznam příkazů
{

i = 5;

j = 6;

}

Blok
seznam definicí následovaný
seznamem příkazů
{

int i;

i = 5;

j = 6;

}

2002 12

Konstanty - celočíselné

• desítkové (decimální)
– posloupnost číslic, z nichž první nesmí být nula

• Příklad: 15, 0, 1

• osmičkové (oktalové)
– číslice 0 následovaná posloupností osmičkových číslic (0 - 7)

• Příklad: 065, 015, 0, 01

• šestnáctkové (hexadecimální)
– číslice 0 následovaná znakem x (nebo X) a posloupností

hexadecimálních číslic (0 - 9, a - f, A - F)
• Příklad: 0x12, 0X3A, 0XCD, 0xCD, 0Xcd, 0x15, 0x0, 0x1

Typ konstanty je určen implicitně její velikostí nebo explicitně
použitím přípony:
Příklad: 12345678L - konstanta typu long

12345LU - konstanta typu long unsigned

2002 13

Konstanty - reálné

• Tvoří se podle běžných zvyklostí
• Mohou začínat a končit desetinnou tečkou (ne čárkou!)
• Implicitně jsou typu double

• Příklad: 15. 56.8 .84 3.14 5e6 7E23

• Reálná konstanta typu float se definuje pomocí přípony F
(nebo f)

• Příklad: 3.14f 3.14F

• Reálná konstanta typu long double pomocí L (nebo l)
• Příklad: 12e3L 12E3L 12e3l

(malé l raději nepoužívat, může se lehce zaměnit za 1)

2002 14

Konstanty - znakové

• Stejně jako v Pascalu se uzavírají mezi apostrofy
• Příklad: 'a', '*', '4'

• Hodnota znakových konstant (ordinální číslo) je odvozena z
odpovídající kódové tabulky – nejčastěji ASCII.

• Velikost znakové konstanty je int a ne char !

• Znaková konstanta z neviditelného znaku – '\ddd', kde
ddd je kód znaku složený ze tří oktalových číslic

• Příklad: '\012', '\007'

2002 15

Konstanty – řetězcové (literály)

Uzavírají se mezi uvozovky (narozdíl od Pascalu)
Příklad: "Toto je retezcova konstanta"

2002 16

Aritmetické výrazy

Příkazem se stává výraz ukončený středníkem
Příklad: i = 2 výraz s přiřazením

i = 2; příkaz

Samotný středník se používá pro prázdný příkaz (null
statement), který se používá např. v cyklu while nebo for

2002 17

Aritmetické výrazy – unární operátory

Unární –
Unární +

Oba operátory se používají v běžném významu

2002 18

Aritmetické výrazy – binární operátory (1)

Z větší části mají stejný význam jako v Pascalu:
Pascal C

– Sčítání + +

– Odčítání - -

– Násobení * *

– Reálné dělení / /

– Celočíselné dělení DIV /

– Dělení modulo MOD %

Zda bude dělení celočíselné nebo reálné, závisí na typu operandů:
int / int - celočíselné
int / float - reálné
float / int - reálné

float / float - reálné
Pozn.: Pro double a long double platí totéž co pro float.

2002 19

Aritmetické výrazy – binární operátory (2)

Příklad:
int i = 5, j = 13;

j = j / 4; - celočíselné dělení, j bude 3

j = i % 3; - dělení modulo, j bude 2

2002 20

Aritmetické výrazy – speciální unární operátory (1)

V Pascalu nemají obdobu
inkrement ++

dekrement --

Oba operátory se dají použít jako předpony (prefix) i jako
přípony (suffix):

++vyraz

– inkrementování před použitím

– výraz je nejprve zvětšen o jedničku a pak je tato nová hodnota
vrácena jako hodnota výrazu

vyraz++

– inkrementování po použití
– je vrácena původní hodnota výrazu a pak je výraz zvětšen o

jedničku

Pozor: Výraz musí být l-hodnota (tedy proměnná).
45++ nebo --(i+j) je chybné!

2002 21

Aritmetické výrazy – speciální unární operátory (2)

Příklad:
Různá použití operátorů ++ a --

int i=5, j=1, k;

i++; - i bude 6
j=++i; - j bude 7, i bude 7

j=i++; - j bude 7, i bude 8

k=--j+2; - k bude 8, j bude 6, i bude 8

2002 22

Aritmetické výrazy – přiřazovací operátory (1)

Operátor přiřazení - Pascalu: :=

- C: =

C má navíc celou řadu rozšířených přiřazovacích operátorů.
Místo přiřazení:

l-hodnota = l-hodnota operátor výraz

se velmi často používá zkrácený zápis:

l-hodnota operátor= výraz

2002 23

Aritmetické výrazy – přiřazovací operátory (2)

Dají se použít následující přiřazení:
l-hodnota += výraz l-hodnota = l-hodnota + výraz
l-hodnota -= výraz l-hodnota = l-hodnota + výraz
l-hodnota *= výraz l-hodnota = l-hodnota * výraz
l-hodnota /= výraz l-hodnota = l-hodnota / výraz
l-hodnota %= výraz l-hodnota = l-hodnota % výraz

Pozn.:
Mezi operátorem a rovnítkem se nedává mezera.
ne j + = 5; ale j += 5;

Příklad:
int i = 4, j = 3;

j += i; j bude 7
j /= --i; j bude 2, i bude 3
j *= i -2; j=j*(i–2)=2

ne j=j*i-2=4

2002 24

Komentáře (1)

Přestože jsou velmi často opomíjeny, jsou důležitou součástí
programu:

– zpřehledňují, někdy na první pohled dost nepochopitelný,
program

– slouží k tomu, aby se ve vašem programu vyznal někdo cizí
nebo i vy sami, když se k němu vrátíte třeba za několik let

– doporučuje se komentovat své programy během vytváření, a
ne až po odladění („Až na to někdy zbude čas.“)

/* toto je komentar */

/* viceradkovy

komentar

*/

x=3*a+b; /* popis prikazu */

2002 25

Komentáře (2)

Někdy se můžeme setkat s jiným stylem psaní komentářů,
který není v normě ANSI C a nazývá se jednořádkový
komentář.

– Začíná dvojicí // a končí koncem řádku
– Byl zaveden pro C++. Jeho použití v programech C je sice

technicky nesprávné, ale většina překladačů jej bude
akceptovat.

x=3*a+b; // popis prikazu

je totéž jako

x=3*a+b; /* popis prikazu */

2002 26

Terminálový vstup a výstup

V C se (narozdíl od Pascalu) nedefinuje žádná I/O
(vstupně/výstupní – Input/Output) operace jako část jazyka.

Nezbytné vstupy a výstupy jsou řešeny tak, že standardní
knihovna obsahuje několik funkcí, které I/O zajišťují.

Důvod:
Nejvíce strojově závislé akce jsou právě I/O a tímto se tedy

důsledně oddělují strojově závislé a strojově nezávislé části
jazyka.

Tato skutečnost je pak významným přínosem při vytváření
kompilátoru pro jiný počítač.

2002 27

Hlavičkový soubor stdio.h a math.h

Aby bylo možné správně používat všechny funkce pro vstup a
výstup, je nutné na začátku programu připojit "popis" těchto
funkcí. Ten se nachází v hlavičkovém (header) souboru
stdio.h a do programu se připojí pomocí příkazu:

#include <stdio.h> na konci není středník !!!

Od tohoto okamžiku je možné používat dále popisované funkce

Pro využívání standardních matematických funkcí (sin, cos,
sqrt, apod.) existuje hlavičkový soubor math.h

#include <math.h>

... c=sqrt(a+b); ...

2002 28

Vstup a výstup znaku

putchar() výstup jednoho znaku
getchar() vstup jednoho znaku
Obě funkce pracují s proměnnými typu int a ne char

Příklad:
Program přečte znak z klávesnice, vytiskne ho a odřádkuje.
#include <stdio.h>

int main()

{

int c;

c = getchar();
putchar(c);

putchar('\n');

}

2002 29

Formátovaný vstup a výstup (1)

C Pascal
Vstup scanf() READ
Výstup printf() WRITE

Základní použití:
• Příkaz: scanf("%d",&i)

přečte z klávesnice celé číslo a uloží ho do proměnné i
• "%d" určuje formát čtení (zde dekadický celočíslený)

• & před i je nezbytně nutný (vynechání je častou chybou)

• Příkaz: printf("%d",i)
vytiskne na obrazovku hodnotu proměnné i

• "%d" určuje formát výpisu (zde dekadický celočíslený)
• před i není &, což je rozdíl proti scanf()

(je to hodnota a ne adresa)

2002 30

Formátovaný vstup a výstup (2)

Program přečte z klávesnice dvě čísla, vytiskne je v
obráceném pořadí a pak vytiskne jejich součet

#include <stdio.h>

int main()

{

int i, j;

scanf("%d", &i);

scanf("%d", &j);

printf("%d%d", j, i);

printf("%d je soucet", i + j);

}

2002 31

Formátovaný vstup a výstup (3)

Příklady (i = 4, j = 7):
1. printf("Soucet je %d", i + j);

vypíše: Soucet je 11

2. printf("Pracovali na 100%%");
vypíše: Pracovali na 100% neboť pro výpis znaku "%" je
nutné tento znak zdvojit

3. printf("Soucet je %d\tSoucin je %d\n", i + j,
i * j);
vypíše: Soucet je 11 Soucin je 28 a odřádkuje

4. printf("\007Chyba, pokus o deleni nulou.\n");
pískne a vypíše: Chyba, pokus o deleni nulou. a
odřádkuje

Vždy je nutné dodržet stejný počet parametrů (proměnných nebo
výrazů) jako formátovacích specifikací (kolik je v řídicím
řetězci znaků "%", tolik musí být dalších parametrů)

2002 32

Formátovaný vstup a výstup (4)

Některé formátové specifikace řídicího řetězce formátu
uváděné za znakem "%" použitelné jak pro scanf() tak i pro
printf():

c - znak
d - desítkové číslo typu signed int
ld - desítkové číslo typu signed long
u - desítkové číslo typu unsigned int
lu - desítkové číslo typu unsigned long
f - float (pro printf() také double)
Lf - long double (Pozor: L musí být velké!)

lf - double (Pozor: někdy nelze použít pro printf())

x - hexadecimální číslo malými písmeny, např. 1a2c

X - hexadecimální číslo velkými písmeny, např. 1A2C
o - osmičkové číslo

s - řetězec

2002 33

Časté chyby

• main(); za definicí funkce se nedělá středník

• printf("%d",i,j); mnoho argumentů

• printf("%d%d",i); málo argumentů

• scanf("%d",i); chybí znak & tedy: scanf("%d",&i);

• scanf(0"%d",&c); formát pro char je %c scanf("%c",&c);

2002 34

Co je dobré si uvědomit

• Všechna klíčová slova musí být malými písmeny.
• Dělení (/) je operace závislá na typu operandů – pro celá

čísla je to celočíselné dělení, jinak je to reálné dělení.
• Přiřazení je výraz a příkazem se stává až po ukončení

středníkem.
• Počet výstupních výrazů v printf() nebo vstupních v
scanf() musí přesně odpovídat počtu formátových
specifikací.

• U proměnných ve scanf() je &.

Řídicí struktury

2002 36

Booleovské výrazy

V C není implicitně typ Boolean. Místo něj se používá typ int,
kde nulová hodnota (0) znamená FALSE a nenulová hodnota
(nejčastěji 1, ale není to podmínkou) je TRUE.

Pascal C
rovnost = ==

nerovnost <> !=

logický součin AND &&

logický součet OR ||

negace NOT !

další čtyři relační operátory mají stejnou syntaxi i význam
menší <

menší nebo rovno <=

větší >

větší nebo rovno >=

2002 37

Zkrácené vyhodnocování logických výrazů

Zajímavou vlastností jazyka C je, že se logický součin a součet
vyhodnocují ve zkráceném vyhodnocení (short circuit).
To znamená, že argumenty jsou vyhodnocovány zleva doprava
a jakmile je možno určit konečný výsledek, vyhodnocování
okamžitě končí.
Příklad:
C if (y != 0 && x / y < z)

nedojde k dělení nulou

Pascal if ((y <> 0) AND (x / y < z))

může dojít k dělení nulou

2002 38

Priority vyhodnocování výrazů (1)

Tabulka priorit a způsobu vyhodnocování některých operátorů:
Operátor Směr vyhodnocení
! ++ -- - + (typ) zprava doleva
* / % zleva doprava
+ - zleva doprava
< <= >= < zleva doprava
== != zleva doprava
&& zleva doprava

|| zleva doprava
? : zleva doprava
= += -= *= atd. zleva doprava
, zleva doprava

2002 39

Priority vyhodnocování výrazů (2)

V C mají aritmetické operátory a operátor porovnání vyšší
prioritu než logické operátory, takže výraz:

if (c >= 'A' && c <= 'Z')

je správný, kdežto stejně napsaný pascalovský výraz:
if (c >= 'A' AND c <= 'Z')

je chybný.

Pozor:
Nezaměňovat && za & nebo || za |. Operátory & a | představují

bitové operace, a použity nesprávně v logických výrazech
dají nesprávné výsledky.

2002 40

Blok

Syntaxe bloku je velice jednoduchá. Blok je uzavřen mezi
dvěma složenými závorkami. Mezi těmito závorkami mohou být
libovolné jiné příkazy včetně dalších bloků.
Kromě toho mohou být ještě na začátku bloku, tedy před
prvním příkazem, lokální deklarace a definice. Proměnné (a
další objekty) takto definované jsou pak viditelné pouze uvnitř
bloku a v dalších vnořených blocích.

Blok je v C chápán jako jediný příkaz a proto se také dá použít
všude tam, kde je možné použít příkaz. Blok se také často
označuje pojmem složený příkaz.

{ int i;

DelejNeco(i);

{DelejJesteNeco(i);

}

}

2002 41

Podmíněný příkaz if

if (výraz1) příkaz1

je základní příkaz sloužící k větvení toku programu. Prvním krokem při
vykonávání příkazu je vyhodnocení výrazu1 (závorky kolem výrazu nelze
vynechat !). Pokud je hodnota, vzniklá jeho vyhodnocením, nenulová,
provede se příkaz1. V opačném případě, kdy je výraz1 vyhodnocen jako
nula, se příkaz1 neprovede.

Příkaz if lze ještě doplnit o nepovinnou část else:
if (výraz1) příkaz1 else příkaz2

Rozdíl při použití else je v tom, že při nesplnění podmínky (výraz1 je
vyhodnocen jako 0) se provede příkaz2.

Příklad:
if (a>1) a=1; else b=1;

V příkazu a=1; (stejně tak v b=1;) je nutné použít středník, protože právě
ten udělá z výrazu a=1 příkaz.
V C znak středníku neplní oddělovací funkci, jak je tomu například v
Pascalu, ale je přímo součástí příkazů.

2002 42

Cyklus while

Příkaz while realizuje v C cykly s podmínkou na začátku.

while (výraz1) příkaz1

funguje tak, že se nejprve vyhodnotí výraz1 a pak, je-li
vyhodnocen jako nenulový, provede se příkaz1. Po jeho
provedení se znovu vyhodnotí výraz1 a případně se znovu
provede příkaz1. Cyklus končí v okamžiku, kdy je podmínka
vyhodnocena jako 0. Příkaz1 se pak již neprovede a program
pokračuje dalším příkazem po while.

int a=0;

while (a<10) a++; //desetkrát se provede inkrementace a.

2002 43

Cyklus do-while

Podobný cyklu while, ale vyhodnocuje pokračovací podmínku (výraz1) až
po provedení těla cyklu. To znamená, že minimálně jednou se tělo cyklu
provede vždy.
do příkaz1 while (výraz1)

Nejprve se provede příkaz1 a teprve po jeho provedení je vyhodnocen
výraz podmínky. Pokud je nenulový, znovu se vykoná příkaz1. To pokračuje
až do doby, kdy je podmínka vyhodnocena jako nulová.

a=0;

do { printf(“ahoj\n”);

}while (a++ != 10)

Na předchozím příkladu je vidět, že poslední řádek si lze, u složitějších
programů, snadno splést se zápisem obyčejného cyklu while. Proto se
ukončovací závorka bloku často píše před slovo while. Tak programátor
naznačí sám sobě, ale i dalším lidem, kteří budou se zdrojákem pracovat,
že nejde o cyklus while, ale do-while.

2002 44

Cyklus for (1)

Cyklus for je vlastně jen trochu rozšířený příkaz while, pomocí kterého
můžeme přehledněji zapisovat iterační cykly. Už na první pohled vypadá
příkaz for odlišně od stejných příkazů v jiných jazycích. I jeho použití
může být značně odlišné od toho, na jaké jsme zvyklí třeba z Pascalu.
Nicméně hlavní způsob jeho uplatnění budou, stejně jako v jiných
jazycích, právě iterační cykly.

for (inicializační_výraz; terminální_výraz; iterační_výraz)

příkaz1

příkaz for je prováděn v těchto krocích:

1. Je vyhodnocen inicializační výraz.

2. Je vyhodnocen terminální výraz. Pokud je vyhodnocen jako 0, je
vykonávání cyklu for ukončeno a pokračuje se prvním příkazem
uvedeným po cyklu. Pokud je ale vyhodnocen jako nenulový, pokračuje
se krokem 3.

3. Je proveden příkaz1.
4. Vyhodnotí se iterační výraz. Pokračuje se znovu od bodu 2.

2002 45

Cyklus for (2)

Typické použití cyklu for:
int i;

for(i=0; i<5; i++) printf("%d",i);

// 5-krát se provede příkaz printf, který
tiskne hodnotu proměnné i.

Jako inicializační a iterační výrazy mohou být použity výrazy
jakéhokoliv typu. Terminální výraz by však měl být číselný.
Je také možné vynechat libovolný z těchto výrazů. Například
vynecháním inicializačního a iteračního výrazu vlastně získáme
jinak zapsaný cyklus while.

Vynecháním terminálního výrazu pak docílíme nekonečného
cyklu, protože chybějící terminální výraz bude nahrazen
nějakou nenulovou konstantou a ta, samozřejmě, nemůže být
nikdy vyhodnocena jako 0.

2002 46

Cyklus for (3)

Následující příklad demonstruje použití cyklu for pro neiterační
cyklus.

for (;(a=getch())!=27; putch(a));

Inicializační výraz je vynechán, ale znak středníku je povinný a
tudíž jej vynechat nelze. V terminálním výrazu je do proměnné
a načítán znak z klávesnice a načtená hodnota je hned použita
při porovnání s konstantou 27 (klávesa Escape). Cyklus je tedy
ukončen stiskem klávesy <Esc>.
Tělem cyklu je prázdný příkaz ;.
Tisk znaku zajišťuje až vyhodnocení iteračního výrazu.

2002 47

Příkaz skoku goto

Příkaz goto rozhodně nepatří mezi hojně užívané příkazy,
tedy alespoň ne mezi programátory, kteří se drží zásad
strukturovaného programování.
Použití goto se lze vždy vyhnout, a proto se používá pouze v
ojedinělých případech, kdy by se program bez jeho použití
značně znepřehlednil.
goto návěští;

.

.

návěští: příkaz;

Provedením příkazu goto se vykonávání programu přesune
na příkaz, před kterým je uveden odpovídající identifikátor
návěští následovaný dvojtečkou. Návěští nemusí být předem
deklarováno, a protože pro návěští je vyhrazen vlastní jmenný
prostor, mohou být jejich identifikátory shodné s identifikátory
obyčejných proměnných

2002 48

Příkaz break

break;

Příkaz break může být použit v tělech cyklů (while, do-
while, for) a v těle příkazu switch, přičemž jeho použití
způsobí okamžité opuštění cyklu (nebo příkazu switch). Jde
tedy vlastně o skok na první příkaz za cyklem.

2002 49

Příkaz continue

continue;

Příkaz continue, na rozdíl od break, může být použit pouze
v tělech cyklů a způsobí okamžité započetí dalšího cyklu.
Stejně jako u příkazu break se můžeme i na continue dívat
jako na příkaz skoku, ale tentokrát se skočí za poslední příkaz
těla cyklu.
while (1)

{ c = getch();
// do c se načte znak z klávesnice

if (c==27) break;

// pokud je stisknuta klávesa ESC, je cyklus ukončen

if (!isalpha(c)) continue;

// není-li znak písmeno, začne se provádět znovu tělo cyklu,

// takže už nedojde na...

putch (c); // ...vytištění znaku

}

2002 50

Příkaz mnohonásobného větvení – switch (1)

Pokud potřebujeme tok programu větvit do více jak dvou směrů,
můžeme místo několika do sebe vnořených příkazů if-else využít
možností, které nám v C poskytuje příkaz switch.
switch (výraz1)
{

case konstantní_výraz: příkazy
case konstantní_výraz: příkazy
.
.
default: příkazy

}
při provádění příkazu switch je nejdříve vyhodnocen výraz1 a pak se
postupně vyhodnocují konstantní_výrazy v návěštích case. V případě,
že je nalezeno návěští, kde je konstantní_výraz roven hodnotě výrazu1,
začnou se provádět všechny příkazy uvedené za tímto návěštím až do
konce příkazu switch. To ale znamená, že se provedou i všechny
příkazy v následujících větvích. Pokud tedy chceme, aby se provedla
vždy jen jedna větev, lze vykonávání příkazu switch okamžitě zastavit
uvedením příkazu break. (Obdoba Pascalovského příkazu case).

2002 51

Příkaz mnohonásobného větvení – switch (2)

Pokud není nalezena žádná vyhovující větev, skočí se na
návěští default (pokud je použito), které může být uvedeno
kdekoliv v těle příkazu switch.

int c;

.

.

.

switch (c)

{

case 1:

case 2:

case 3: printf ("Cislo 1, 2, nebo 3");break;

case 4: printf ("Cislo 4"); break;

default: printf ("Jine cislo, nez 1,2,3 nebo 4"); break;

}

2002 52

Podmíněný výraz - operátor "?"

Vedle podmíněného příkazu if-else existují v C ještě další způsoby, jak
if-podmínky zapsat. Jedním z nich je použití operátoru "?", který je
mimochodem jediný operátor v C mající tři operandy. Proto se pro něj často
používá název ternární operátor.
výraz1 ? výraz2 : výraz3

Vyhodnocení výrazu s ternárním operátorem probíhá takto:

Nejdříve je vyhodnocen výraz1, který by měl být číselného typu. Je-li jeho
hodnota určena jako nenulová, je následně vyhodnocen výraz2 a jeho
hodnota je zároveň výslednou hodnotou celého výrazu. Výraz3 se vůbec
nevyhodnotí a tudíž se neprovedou ani případné postranní efekty. V
případě, že je výraz1 vyhodnocen jako nula, je naopak vyhodnocen výraz3
a jeho hodnota je také výsledkem celé operace.

Na rozdíl od příkazu if-else, použití operátoru "?" tvoří výraz a z toho také
vyplývají odlišné možnosti jeho použití.
i = a>b?a:b;

// proměnné i se přiřadí vždy větší z čísel a a b

2002 53

Operátor postupného vyhodnocování ","

výraz1 , výraz2

Operátor „čárka“ je jeden z mála operátorů, který zajišťuje
pořadí vyhodnocení svých operandů. Nejdříve je vyhodnocen
levý operand, tedy výraz1, jehož hodnota je ovšem
zapomenuta, a který slouží především k vykonání postranních
efektů. Jako druhý je pak vyhodnocen výraz2, jehož hodnota je
pak i výslednou hodnotou celého výrazu.

Operátor čárky se často používá například v řídících částech
příkazů for a while, kde jeho použití může vést ke zjednodušení
zápisu, nebo kde slouží jako prostředek k vykonání dalších
postranních efektů.

for (i=0, j=9; i<10; i++, j--) printf("%d %d\n", i, j);

//inkrementace i a dekrementace j

2002 54

Zkrácené vyhodnocování logických operátorů

Při vyhodnocování výrazů s logickými operátory && nebo ||
často stačí k určení výsledné hodnoty vyhodnotit pouze jeden z
operandů.
Například u výrazů s operátorem logického součinu &&, kdy je
první operand vyhodnocen jako nulový, nemůže již
vyhodnocení druhého operandu nijak ovlivnit celkový výsledek,
který bude také nulový.
V C se v takovém případě skutečně pravý operand
nevyhodnocuje a tato skutečnost tedy může být využita jako
další způsob podmíněného vyhodnocování.
i<0 && (i=0);

!(i<0) || (i=0);

Oba příklady mají stejný efekt: Je-li hodnota proměnné i menší
než 0, bude tato hodnota nastavena na 0.

2002 55

Funkce (1)
Funkce jsou nepostradatelné součásti všech strukturovaných jazyků, a tedy
i jazyka C.
Definice funkce
návratový_typ identifikátor_funkce (seznam definicí
formálních parametrů)

{ lokální deklarace a definice;

..

příkazy;

}

Definice funkce začíná tzv. hlavičkou funkce, což je v našem vzorovém
příkladu první řádek. Návratový_typ určuje jakého typu bude hodnota,
kterou bude funkce vracet. Jako další po identifikátoru typu píšeme
identifikátor funkce následovaný seznamem definicí formálních parametrů.
Formální parametry jsou pak proměnné nadefinované v tomto seznamu. Ty
se definují stejně jako normální proměnné, jen s tím rozdílem, že nelze
zkrátit zápis více proměnných stejného typu oddělením jednotlivých
identifikátorů čárkou, jak ukazuje následující příklad:
int secti (int a,b) //nelze

int secti (int a, int b) //správný zápis

2002 56

Funkce (2)

Po uvedení hlavičky funkce ještě následuje tělo funkce, které je tvořeno
blokem. Jak už víme, na začátku bloku mohou být uvedeny lokální
deklarace a definice, po kterých následují příkazy. Ty obvykle pracují s
předanými parametry. Provádění funkce je ukončeno po vykonání
posledního příkazu těla funkce, ale v takovém případě není možné
odhadnout, jakou hodnotu funkce vrátí. Proto se používá příkaz return
return výraz1;

Tento příkaz způsobí okamžité opuštění funkce, ve které je použit. Hodnota
nepovinného výrazu1 je pak návratovou hodnotou funkce. Pokud výraz1
neuvedeme, bude návratová hodnota předem neurčitelná. Pak bychom ale
neměli tuto hodnotu nikde používat.
int secti (int a, int b)

{return a+b;}

V příkladu je nadefinována funkce, která vrací součet dvou čísel. Typ její
návratové hodnoty je určen jako int, stejně jako typy obou parametrů
funkce. Po předání řízení funkci se hned začne vykonávat příkaz return,
který funkci ihned ukončí a jako výsledek po jejím volání vrátí součet hodnot
předaných parametrů.

2002 57

Funkce (3)

Deklarace funkce
Deklarace funkce je vlastně způsob jak dát překladači všechny potřebné
údaje o funkci, aniž bychom ji museli celou definovat. Předtím, než funkci
zavoláme, měla by být vždy předem definována, nebo deklarována. To
proto, aby překladač znal všechny formální parametry, a tak mohl vytvořit
správný kód. Pokud funkci nebudeme ještě před jejím voláním deklarovat
ani definovat, bude překladač odhadovat formální parametry podle typu
skutečných parametrů (parametry předané funkci při jejím volání), které ale
nemusí odpovídat typu parametrů formálních. Výsledkem by pak byl
nesprávně sestavený kód. Pokud ale z nějakého důvodu není funkce
definována před svým použitím, měla by být alespoň deklarována.
Deklarace funkce vypadá takhle:
návratový_typ identifikátor_funkce (seznam definicí
formálních parametrů);

Je to vlastně celá hlavička definice, která je ale zakončená středníkem.
int secti (int a, int b); // deklarace výše definované
funkce.

2002 58

Funkce (4)

Volání funkce
identifikátor_funkce (seznam parametrů)

Jednotlivé výrazy v seznamu parametrů jsou odděleny čárkou. Samotné
parametry jsou pak výrazy, které jsou před předáním řízení funkci
vyhodnoceny a jejich výsledné hodnoty jsou funkci předány. I když funkce
nemá žádné skutečné parametry, závorky je nutné uvést vždy. Počet
skutečných parametrů musí být vždy stejný nebo větší než počet parametrů
formálních.

Samotné volání funkce je chápáno jako výraz a to určuje i místo jeho použití
(např. operand některého operátoru, ve výrazovém příkazu, jako skutečný
parametr jiné funkce).
Formální parametry jsou vlastně lokální proměnné, a tedy existují pouze po
dobu vykonávání funkce a jsou viditelné pouze z těla funkce. Když
vykonávání funkce skončí, je paměť vyhrazená pro tyto proměnné uvolněna
a jako výsledek volání funkce se použije její návratová hodnota (většinou
tedy hodnota výrazu za příkazem return).
a = secti(3,5); //do proměnné a se uloží výsledek po
volání funkce secti(3,5)

2002 59

Preprocesor jazyka C

Jistou zvláštností jazyka C je jeho preprocesor. Ten ještě před
samotným překladem zdrojový soubor upraví a teprve
upravený soubor je předán překladači. Mezi úpravy, které
preprocesor provádí se řadí především substituce textu,
odstraňování komentářů a podmíněný překlad.

Činnost preprocesoru řídíme pomocí tzv. direktiv preprocesoru.
Každá direktiva je uvozena znakem #, který musí být uveden
hned jako první znak na řádku.
Tak určíme, že zbytek řádku je určen preprocesoru a zápisy
v něm se tedy řídí jeho syntaktickými pravidly, která nejsou
totožná s těmi céčkovskými.

2002 60

Direktiva #include

#include <soubor> nebo #include "soubor"

Pokud preprocesor narazí na výskyt direktivy #include,
nahradí ji obsahem určeného souboru. To se nejčastěji
používá pro vkládání tzv. hlavičkových souborů s
deklaracemi funkcí apod., nebo přímo jiných zdrojových
souborů C. Jak jste si jistě všimli, je možné v zápisu
direktivy ohraničit jméno souboru buď lomenými závorkami,
nebo uvozovkami. Pokud použijete zápisu se závorkami a
nespecifikujete úplnou cestu k souboru, bude soubor hledán
ve standardním adresáři pro ukládání hlavičkových souborů.
Použijete-li zápis s uvozovkami, bude soubor hledán
nejdříve v adresáři se zdrojovým souborem a pak teprve v
adresáři s hlavičkovými soubory.

2002 61

Direktiva #define

#define identifikátor_makra text_makra
Tato direktiva se používá pro vytváření tzv. maker.
Makra se často používají pro definování tzv. symbolických konstant, kdy

místo konstanty používáme nějaké symbolické jméno. Ještě před
překladem tak budou všechny výskyty tohoto symbolického jména
nahrazeny skutečnou hodnotou.

#define PI 3.141592653
Předpokládejme, že máme ve svém zdrojáku nadefinována makro z

předchozího příkladu a že tam máme také následující řádky:
double c;
printf ("Cislo PI ");
c = PI;
Po zpracování preprocesorem bude předchozí zápis vypadat takto:
double c;
printf ("Cislo PI ");
c = 3.141592653;
V parametru funkce printf nebylo nahrazení textem makra provedeno,

protože v řetězcích se nahrazování neprovádí.

2002 62

Pole (1)

Definice proměnné typu pole
• Proměnná typu pole se definuje podobně jako proměnná

jednoduchého typu. Rozdílem je, že při definici pole se za
jménem identifikátoru proměnné ještě uvádějí hranaté
závorky, ve kterých určíme počet prvků pole.

bázový_typ identifikátor[počet_prvků];

• Bázový typ neurčuje typ proměnné, ale typ položek pole. Že
jde o pole pozná překladač právě podle hranatých závorek.
Počet_prvků je jakýkoliv konstantní výraz, tedy takový, který
lze vyhodnotit již při překladu.

short int moje_pole[10];

• Nadefinovali jsme proměnnou typu pole, která obsahuje 10
položek typu short int. Znamená to tedy, že se pro naši
proměnnou vyhradilo 20 bytů (10 * sizeof(short int)).

2002 63

Pole (2)

Prvky pole lze inicializovat již při definici. Stačí za poslední hranatou
závorku uvést znak ‘=’ následovaný seznamem inicializačních výrazů,
jak ukazuje následující příklad:

short int moje_pole[5]={1, 0, 443, -46, 987};

Inicializační výrazy se přiřazují postupně, tak jak jsou zapsány. Pole
moje_pole bude naplněno hodnotami takto:

• V případě, že počet inicializačních výrazů je vyšší než počet položek
pole, bude se při překladu hlásit chyba. Pokud je počet inicializátorů
menší, chyba se nehlásí a zbylé položky jsou inicializovány buď nulovou
hodnotou, nebo nejsou inicializovány vůbec.

• Pokud při definici zároveň inicializujeme prvky pole, nemusíme specifikovat
velikost pole, ale stačí když uvedeme prázdné závorky. Překladač sám určí
velikost pole podle počtu inicializačních výrazů.

short int moje_pole[]={1, 0, 443, -46, 987};

2002 64

Pole (3)

• V jazyce C jsou všechny proměnné typu pole indexovány od nuly. To
znamená, že první položka má vždy index 0, což není možné nijak
ovlivnit. Budeme-li tedy chtít získat první položku pole, použijeme zápis:

moje_pole[0]

• Je důležité si uvědomit, že indexací nezískáváme pouze hodnotu prvku
pole, ale přímo prvek samotný, tedy l-hodnotu. Je tedy možné použít
tento zápis i na levé straně přiřazovacího výrazu:

int moje_pole[4];

moje_pole[0]=250;

Tímto zápisem jsme do první položky pole zapsali hodnotu 250.

Procházení pole
• Při procházení položek pole je nutné dát si pozor na to, abychom nikdy

omylem nepřekročili hranice pole. Jazyk C totiž zásadně nekontroluje
meze polí, a tak je bez problémů možné číst i zapisovat do paměti, která
nám již nepatří. To v nejhorším případě může vést až ke zhroucení
programu, nebo celého počítače. Poslední prvek pole o n položkách tedy
bude mít index n-1.

2002 65

Řetězce (1)

Jazyk C nemá implementovaný speciální datový typ pro
řetězce. Ty jsou proto v C reprezentovány jako pole prvků typu
char, kde je v každém prvku uložena ascii hodnota
příslušného znaku řetězce. Jako poslední musí být vždy
uveden znak EOS (end of string), což je znak s ascii
hodnotou 0. Ten označuje konec řetězce.
Z toho, jak jsou řetězce ukládány, je jasné, že velikost řetězce
je omezena jedině velikostí paměti, kterou pro něj lze alokovat.

2002 66

Řetězce (2)

Inicializace řetězce při definici
Řetězce se definují stejně jako pole. Pouze je třeba dát si
pozor na to, abychom při definování velikosti nezapomněli na
znak EOS. I pole prvků char lze samozřejmě inicializovat při
definici, a to stejným způsobem jako obyčejná pole, tedy
výčtem jednotlivých prvků:
char string[]={'p','o','l','e','\0'};

Jednotlivé znakové konstanty představují ascii hodnoty, které
jsou do pole string uloženy. Jako poslední znak pak
nesmíme zapomenout vložit znak EOS. Tento způsob
inicializace ale není zrovna moc pohodlný, a tak je možné při
definici inicializovat přímo řetězcovou konstantou:
char string[]="pole";

Tento zápis je zcela ekvivalentní s předchozím. Pro pole string
je vyhrazeno 5 bytů, do kterých je uložen řetězec „pole“ včetně
znaku EOS.

2002 67

Kopírování řetězců

char *strcpy(char cil[], char zdroj[])

Pro kopírování jednoho řetězce do druhého je v C připravena
funkce strcpy, která má dva argumenty, řetězce cil a zdroj.

Bez ohledu na obsah a velikost řetězce cil je do něho postupně,
znak po znaku, kopírován obsah řetězce zdroj, a to až do doby
kdy se narazí na znak EOS. Tento znak je posledním
zkopírovaným znakem. Při používání funkce strcpy je nutné
zajistit, aby pole cil mělo vždy dostatečnou velikost na to, aby
se do něj řetězec zdroj vešel. To ale platí i pro většinu
ostatních funkcí pracujících s řetězci. Návratovou hodnotou
funkce strcpy je ukazatel na řetězec cil, ale protože o
souvislosti polí s ukazateli si povíme až někdy jindy, můžeme
prozatím tuto informaci pominout.

2002 68

Spojování řetězců

Ke spojování řetězců můžeme použít funkci strcat:
char * strcat (char cil[], char zdroj[])

Tato funkce jednoduše připojí řetězec zdroj za řetězec cil.
Stejně jako u funkce strcpy, ani u strcat se neberou ohledy
na skutečnou velikost paměti alokované pro pole cil. To musí
být dostatečně velké, aby pojalo oba řetězce cil a zdroj i se
znakem EOS.

2002 69

Zjišťování délky řetězce

int strlen(char str[])

Pro zjištění délky řetězce nám jazyk C nabízí funkci strlen,
která jako svou návratovou hodnotu vrací délku řetězce, který jí
byl předán parametrem.

2002 70

Porovnávání dvou řetězců

int strcmp (char str1[], char str2[])

Funkce strcmp porovnává řetězce str1 a str2 a vrací zápornou hodnotu v
případě, že řetězec s1 je lexikograficky menší než řetězec s2 a kladné číslo
v případě, že s1 je větší než s2. Jsou-li oba řetězce stejné, je funkcí
vrácena hodnota 0.

Příklad:
char s1[]="retezec";

char s2[]="pole";

char s3[20];

strcpy(s3,s1); // zkopíruje s1 do s3

strcat(s3, "a"); // připojí řetězec "a" k s3

strcat(s3, s2); // připojí řetězec s2 k s3

// v proměnné s3 je teď uložen

// řetězec "retezec a pole";

printf("%d",strlen(s3)); // vypíše délku řetězce s3,

// číslo 14

2002 71

Vícerozměrná pole (1)

Vícerozměrná pole se definují podobně jako jednorozměrná.
Stačí pouze připojit další dvojici hranatých závorek, která poli
přidá novou dimenzi.
int a[10]; definice jednorozměrného pole o deseti prvcích
int b[10][5]; definice dvourozměrného pole 10x5

Zápis definice proměnné a přečteme obvyklým způsobem: “a
je pole desíti prvků, jejichž typ je int.”
Čtení druhé definice bude o trochu složitější. Jak už bylo
řečeno, lze se na vícerozměrná pole dívat jako na pole prvků,
kde tyto prvky jsou jiná pole.
Zápis druhé definice tedy přečteme takto: “b je pole desíti
prvků, jejichž typ je pole pěti prvků typu int.”

2002 72

Vícerozměrná pole (2)

Přístup k prvkům pole
Stejně jako při definici, i při indexaci pole stačí přidat další
index (ve vlastních hranatých závorkách).
Vraťme se znovu k následující definici:
int b[10][5];

Opět využijeme způsobu nazírání jako na jednorozměrné pole.
Použitím jednoho indexu získáme některý prvek pole b.
Například zápisem b[6] získáme sedmý prvek pole b.

Tento prvek je ale sám pěti-prvkové pole.
Další indexací se tedy pohybujeme mezi prvky tohoto pole.
Například b[6][3].

2002 73

Vícerozměrná pole (3)

Ukážeme si to na příkladu, ve kterém si vytvoříme pole
reprezentující následující matici:
1 2 3 b[0],[0] b[0],[1] b[0],[2]

4 5 6 b[1],[0] b[1],[1] b[1],[2]
7 8 9 b[2],[0] b[2],[1] b[2],[2]

10 11 12 b[3],[0] b[3],[1] b[3],[2]

Nejprve vytvoříme nové neinicializované pole 4x3:
int b[4][3];

Pomocí prvního indexu tedy budeme vybírat řádek a druhým
se budeme pohybovat po prvcích tohoto řádku. Teď můžeme
pole naplnit příslušnými hodnotami:
int i,j, k=1;

for (i=0; i<4; i++)
for (j=0; j<3; j++, k++) b[i][j]=k;

2002 74

Vícerozměrná pole (4)

Inicializace při definici
I vícerozměrná pole se dají inicializovat již při definici, a to
stejně jako pole jednorozměrná.
Opět si ale musíme uvědomit, že jednotlivými prvky pole jsou
jiná pole, a tak jako inicializátory musíme uvádět další seznamy
inicializačních výrazů.
int a[2][3]={{22,1,16},{112,0,4}};

int b[3][2]={{22,1},{16,112},{0,4};

Pole a a b z výše uvedených definic pak budou vypadat takto:
Pole a Pole b

22 1 16 22 1

112 0 4 16 112

0 4

2002 75

Vstup ze souboru a výstup do souboru

Z hardwarového hlediska je každý soubor posloupnost bajtů
uložených na nějakém médiu (nejčastěji disku) v několika
blocích. Jak se s bloky pracuje je záležitost operačního
systému a nás to nemusí zajímat. Přístup k souboru je
možný sekvenčně, tak i náhodně.

Základní datový typ pro práci se souborem v jazyce C:
FILE * - což je pointer na objekt typu FILE
(zatím nevíme co to znamená, viz později)

Definice proměnné f pro práci se souborem
FILE *f;

• Identifikátor FILE musí být velkými písmeny

• Proměnná f se dá použít jak pro čtení, tak i pro zápis do souboru

• Chceme-li definovat více proměnných, čili pracovat s více
soubory najednou (např. pro čtení a zápis), musí se znak *
opakovat, tj. FILE *fr, *fw;

2002 76

Vstup ze souboru a výstup do souboru (2)

Otevření souboru pro čtení
Soubor POKUS bude možné jen číst.
f = fopen("Pokus", "r") "r" jako read

Otevření souboru pro zápis
Do souboru POKUS bude možné jen zapisovat
f = fopen("Pokus", "w") "w" jako write

Pozn.:
• Existují i další režimy otevření souboru (kromě "r" a "w")
• Některé kompilátory rozlišují režimy otevření pro textový

nebo binární soubor. V dalším předpokládáme textový režim
• Obecně platí, že "w" nebo "r" bez dalšího písmene znamená

otevření souboru v textovém režimu.

2002 77

Základní operace s otevřeným souborem

Funkce ze standardní knihovny popsané ve stdio.h, které umožňují
pracovat se souborem:
(Proměnná f je typu FILE*).
Čtení znaku ze souboru c = getc(f)

Zápis znaku do souboru putc(c, f)

Formátované čtení ze souboru fscanf(f, "formát", argumenty)

Formátovaný zápis do souboru fprintf(f, "formát", argumenty)

Pozor.:

U funkce putc() je první parametr zapisovaný znak a druhý soubor. To
se často plete s funkcí fprintf(), kde je to obráceně)

Pro osvěžení paměti a také jako ukázku, že se práce se soubory příliš neliší
od práce s obrazovkou a klávesnicí, je uveden i přehled korespondujících
(již známých) funkcí
Čtení znaku z klávesnice c = getchar()

Zápis znaku na obrazovku putchar(c)

Formátované čtení z klávesnice scanf("formát",argumenty)

Formátovaný zápis na obrazovku printf("formát",argumenty)

2002 78

Ukončení práce se souborem

Po skončení práce se souborem (už z něho nebudeme dále
číst nebo do něho nebudeme dále zapisovat) je nutné tuto
skutečnost operačnímu systému sdělit. Tato akce se jmenuje
uzavření souboru a provádí se pomocí funkce
fclose(f), kde f je typu FILE *.

2002 79

Příklady základní práce se soubory (1)

Program vytvoří soubor POKUS.TXT a zapíše do něho čísla od
1 do 10, každé na nový řádek.

#include <stdio.h>

main()

{

FILE *fw;

int i;

fw = fopen("POKUS.TXT", "w");

for (i = 1; i <= 10; i++)

fprintf(fw, "%d \n", i);

fclose(fw);

}

2002 80

Příklady základní práce se soubory (2)

Program přečte tři double čísla ze souboru DATA.TXT a
vypíše na obrazovku jejich součet.

#include <stdio.h>

main()

{

FILE *fr;

double x, y, z;

fr = fopen("DATA.TXT", "r");

fscanf(fr, "%lf %lf %lf", &x, &y, &z);

printf("%f\n", x + y + z);

fclose(fr);

}

2002 81

Příklady základní práce se soubory (3)

Program přečte dva znaky ze souboru ZNAKY.TXT a zapíše je
do souboru KOPIE.TXT.

#include <stdio.h>
main()
{

FILE *fr, *fw;
int c;

fr = fopen("ZNAKY.TXT", "r");
fw = fopen("KOPIE.TXT", "w");

c = getc(fr); /* cteni prvniho znaku */
putc(c, fw); /* zapis prvniho znaku */
putc(getc(fr), fw); /* cteni a zapis druheho znaku */

fclose(fr);
fclose(fw);

}

2002 82

Parametry funkce main (1)

Jak už víme, funkce main má mezi ostatními funkcemi v C výsadní
postavení, neboť, kromě toho že musí být vždy definována, je automaticky
spouštěna ihned po startu programu.
Parametry funkce main se v C využívají pro získání argumentů, které byly
našemu programu předány při jeho spuštění. Dá se říct, že pokud program
reaguje na jemu předané parametry, je to obecně velmi užitečná vlastnost.
Ne vždy je totiž interakce programu s uživatelem vítaná, neboť mnohé úkoly
lze zpracovávat dávkově, a tedy mnohem rychleji. Chceme-li tedy v našich
programech využít možnost práce s parametry příkazové řádky, definujeme
hlavičku funkce main typicky takto:
int main(int argc, char *argv[])

Prvním parametrem je zde proměnná argc, která v sobě nese informaci o
počtu parametrů. Druhý parametr argv pak představuje pole řetězců, ve
kterých jsou tyto jednotlivé parametry uloženy. Formální parametry funkce
main se z historických důvodů pojmenovávají vždy právě jako argc a argv.
Kromě samotných parametrů je v poli argv, jako jeho nultá položka, uložen
i řetězec se jménem spouštěného programu. Hodnota parametru argc
uvažuje i tento řetězec, a tak, pokud programu předáme například tři
parametry, bude mít argc hodnotu 4.

2002 83

Parametry funkce main (2)

Uvažujme, že máme funkci main nadefinovanou výše
uvedeným způsobem, a přeložený program spustíme s dvěma
parametry například takto:
program.exe pr1 pr2

Pak bude v proměnné argc uložena hodnota 3 a první tři
položky pole budou obsahovat tyto řetězce:
argv[0] = "program.exe„

argv[1] = "pr1"

argv[2] = "pr2"

2002 84

Parametry funkce main (3)

Jako příklad si vyzkoušíme jednoduchý program, který načte
jemu předané parametry a spolu s údajem o jejich počtu je
vypíše.
int main(int argc, char *argv[])

{

int i;

printf("Pocet parametru: %d\n", argc);

for (i=0; i<argc; i++)

printf("argv[%d] == \"%s\"\n", i,argv[i]);

return 0;

}

2002 85

Závěr a doporučená literatura

• Text této přednášky rozhodně není učebnicí programování v jazyku C,
protože neobsahuje kompletní popis jazyka C

• Záměrem bylo pouze ukázat některé možnosti pro první kroky při výuce
tohoto jazyka

• Pro bližší studium se doporučují následující publikace:
• SCHILDT, H: Nauč se sám C, Softpress, Praha, 2001. ISBN 80-86497-

16-X

• ECKEL, B. Myslíme v jazyku C++. Praha: Grada Publishing, 2002. ISBN
8-0247-9009-2

• VIRIUS, M. Programovací jazyky C/C++. Praha: Gcomp, 1992. ISBN 8-
0901-0735-4.

• HEROUT, P. Učebnice jazyka C. České Budějovice: Kopp, 1992. ISBN
8-0858-2821-9

• HEROUT, P. Učebnice jazyka C, 2.díl. Č. Budějovice: Kopp, 1992. ISBN
80-85828-50-2

• Internet:
– Např. www.builder.cz

		aub@wo.cz
	2002-11-23T19:44:19+0100
	Brno
	Vladimir Aubrecht
	I am the author of this document

